Archive for the ‘CORN’ Tag

FLOWERS (Part 2 of 2)   Leave a comment

Avoiding Self-Pollination

Self-pollination, transfer of pollen from the stamen of a flower to the pistil of the same flower, as distinguished from cross-pollination.

A few kinds of flowers are self-pollinating; that is, they can be fertilized with their own pollen. In most cases, however, nature takes great care to prevent self-pollination. Cross-pollination usually produces more vigorous plants. This requires the transfer of pollen from one plant to the stigma of another plant of the same species.

Flowers avoid self-pollination in several ways. In some cases the stamens and pistils mature at different times. In other flowers the stamens are shorter than the pistils and hence do not deposit pollen on their own stigma. Wind-pollinated flowers usually bear the stamens and pistils in separate flowers. Alders, birches, walnuts, and hickories bear catkins with pistillate flowers on some branches and catkins with staminate flowers on other branches. Corn has the pistils and stamens on different parts of the same plant. The tassel bears the staminate flowers; the ear bears the pistillate flowers. These are known as monoecious (of the same household) plants. A few trees, such as cottonwoods and willows, carry the separation even further, with the staminate flowers on one tree and the pistillate on another. These are known as dioecious (of two households) plants.

How Fruit Develops

After fertilization of the ovule has taken place the petals, sepals, stamens, and usually the upper part of the pistil fall off. Now, as the ovules grow into seeds (embryo plants), the ovary, or seed case, also changes. In some plants it turns into a fleshy covering, called fruit. The ovary wall separates into two layers. The inner layer becomes a hard shell, called a stone, or pit, which encloses the seed. The outer layer forms the pulpy portion of the fruit. The peach, plum, cherry, and apricot are examples. In the case of berries the entire ovary becomes a fleshy mass in which the seeds are embedded. In the apple, pear, and quince, the ovary and its seeds become the core of the fruit. The pulpy part, which is eaten, is the modified calyx.

The ovaries of many plants develop into so-called dry fruits capsules, pods, nuts, and acorns. Like the fruits and berries, they protect the seeds and help scatter them when they are mature. Another kind of dry fruit is the achene. In this case the ovary wall becomes a coating of the single seed. It does not open at maturity, as the pods and capsules do, to release the seed. Achenes are developed by flowers that produce but one ovule, such as the individual flowers of the composites. The style of the pistil sometimes remains attached to the achene as a long, feathery tail that carries the seed away on the wind. The most common flower with seeds that are readily scattered by the wind is the dandelion, regarded by most people as a weed.

The Origin of Flowers

At least 250,000 species of flowering plants are known. All of them descend from a primitive ancestor that no longer exists. The most primitive modern flowers are the members of the buttercup order, Ranales. A step higher is the rose order, Rosales.

The simplest flowers are the least skilful in making seed. Many stamens mean a great deal of pollen is wasted. A large number of pistils means that many will fail to become pollinated and produce seed. All members of the buttercup order, which includes the little buttercup itself and the splendid magnolia and water lilies, and all the roses have many pistils and stamens. The most highly specialized and most successful flowers are the composites.

Two Kinds of Flowering Plants

Angiosperms (or Angiospermae), class of flowering, vascular plants of the division Magnoliophyta having seeds in an enclosed ovary.

Flowering plants belong to the phylum Tracheophyta, or vascular plants. Thus far the flowers and seed making up only one group of this phylum, the angiosperms, have been described. These are flowers that enclose their seeds within an ovary.

Another group of flowering plants, called gymnosperms, has naked, or exposed, seeds. These plants include the conifers, or cone-bearing trees, such as the pine, fir, spruce, cypress, and cedar. Cones take the place of flowers.

Cones are of two kinds staminate and pistillate. They are usually borne on different branches of the same tree. The staminate, pollen-producing cones are small and last only a few weeks in the spring of the year. The pistillate cones are the large familiar ones. The ovules, usually two in number, are located on the upper surface of each scale. The ovule consists of an embryo sac surrounded by a covering that later becomes the seed coat. In the covering is a tiny opening called the micropyle (little gate).

In late spring the pistillate cones stand upright with the scales opened wide to catch the windblown pollen. When pollen lodges between the scales, they close. Thus protected within the closed cone, the pollen sends out a pollen tube that enters the ovule through the micropyle. When the seeds in the cone are fully grown, it again opens, releasing the matured seed. All gymnosperms are wind-pollinated.

Posted 2012/03/17 by Stelios in Education

Tagged with , , , , , ,

PEST CONTROL   Leave a comment

1869: Birth of ecology. Most people are unaware that the subdivision of biology called ecology is over a century old. Over the course of its development, ecology has emerged as one of the most significant and studied aspects of biology. Ecology refers to the overall interrelated system of nature and the interdependence of all living things.

The word ecology has been popularized more recently because of the many environmental concerns that have been raised since the 1970s. But as a word, ecology was coined in about 1869 by a German zoologist named Ernst Haeckel. A researcher in evolution and a strong supporter of Charles Darwin’s theories, Haeckel spent most of his career teaching at the University of Jena.

The study of ecology dates back to the ancient Greek philosophers. An associate of Aristotle named Theophrastus first described the relationships between organisms and their environment. Today the field of ecology has expanded beyond narrow biological studies to include environmental pollution, population growth, and food supplies.

Organisms considered harmful to humans or their interests are called pests. They include plants or animals that carry disease, cause disease, or destroy crops or structures. The definition of a pest is subjective. An ecologist would not necessarily consider a leaf-eating caterpillar on a corn plant a pest, but a farmer might. The term pest may refer to insects, viruses, and bacteria that carry or cause disease. It may also refer to organisms that destroy crops or man-made structures. Plants, such as weeds or fungi, and vertebrates, such as rats, mice, and birds, are sometimes called pests when they destroy crops or stored foods.

The elimination of pests or the inhibition of their reproduction, development, or migration is known as pest control. The control of pests has a great influence on the world economy. Even with current pest-control measures, agricultural pests are responsible for the annual destruction of millions of acres of crops worldwide. In South east Asia, rodents have been known to destroy as much as 50 percent of a rice crop before it is harvested. In the United States, over 500 million dollars are lost annually to insect and rodent infestation of stored foods and grains.

Some insects are considered pests because they are wood-eaters. They are a threat to wooden structures houses and other buildings, trees, and fences. Several species of ants, bees, and beetles can also damage wooden structures.

In the field of agriculture, pest control is used to protect farm crops and forests that are harvested for their wood. Pest control has also contributed to the management of many health-threatening diseases, including plague, encephalitis, yellow fever, malaria, and typhus.

Chemical Control

The most common method of pest control is the use of pesticides chemicals that either kill pests or inhibit their development. Pesticides are often classified according to the pest they are intended to control. For example, insecticides are used to control insects; herbicides to control plants; fungicides, fungi; rodenticides, rodents; avicides, birds; and bactericides to control bacteria. Pesticides also include chemosterilants and growth regulators, which are used to interfere with the normal reproduction or development of the pest.

Pyrethrum, old genus of composite family which botanists now place in genus Chrysanthemum; most garden varieties were derived from Chrysanthemum roseum, or Pyrethrum roseum, a handsome perennial with finely dissected leaves and white to crimson and lilac flowers; the flowers of Chrysanthemum cinerariaefolium, used in insecticides, had important part in U.S. troops’ fight against malaria-carrying mosquitoes in World War II.

Chemical control of pests probably began with poisonous plant compounds. In the 18th and 19th centuries, farmers ground up certain plants that were toxic to insects or rodents plants such as chrysanthemums or tobacco. The plant “soup” was then applied directly to either the crops or the pests. Chemists later discovered that they could extract the toxic compounds from these poisonous plants and apply the compounds as liquid sprays. Such chemicals as nicotine, petroleum, coal tar, creosote, turpentine, and pyrethrum (obtained from a type of chrysanthemum) were eventually extracted for use as sprays. Organic compounds such as these were eventually replaced by more effective inorganic chemicals, including arsenic, lime, sulphur, strychnine, and cyanide.

With the advent of synthetic organic compounds during World War II, a dramatic change occurred in pest control. The discovery of the insecticidal properties of the synthetic compounds DDT (dichlorodiphenyltrichloroethane) which was widely used against disease-spreading insects during the war and BHC (benzene hexachloride) made the notion of pest-free crops realistic. The development of another synthetic organic compound, the selective herbicide 2,4-D (2,4-dichlorophenoxyacetic acid), led to the development of other selective herbicides.

With the discovery of DDT, 2,4-D, and BHC, researchers began to develop other synthetic organic pesticides, especially growth regulators, chemosterilants, pyrethroids (compounds with insecticidal properties similar to those of pyrethrum), and organophosphate chemicals. This research expanded in order to develop other, non chemical, methods of pest control after the harmful persistence of pesticides in the environment was recognized. It was discovered in the 1950s that DDT and its related compounds are not easily broken down in the environment. DDT’s high stability leads to its accumulation in insects that constitute the diet of other animals. These high levels of DDT have toxic effects on animals, especially certain birds and fishes. Scientists also found that many species of insects rapidly develop populations that are resistant to the pesticide.

By the 1960s, the value of DDT as an insecticide had decreased, and in the 1970s severe restrictions were imposed on its use. In the United States, the Federal Environmental Pesticide Control Act of 1972 and the Federal Insecticide, Fungicide, and Rodenticide Act passed in 1972 required pesticide manufacturers to conduct scientific tests on the biological activity, defectiveness, persistence, and toxicity of any new pesticide before the chemical could be marketed. In the late 1980s, the average cost to develop and register a pesticide product was 10 million dollars. In the 1960s and 1970s, public objections were raised over the indiscriminate use of pesticides. The Environmental Protection Agency (EPA) was created in 1970 to ascertain past damage and possible future damage that could occur to the environment as the result of widespread pesticide use, and to set up programs to combat environmental problems.

An alternative concept of integrated pest management was adopted for many agricultural pests. This approach involves non-chemical pest-control methods, including crop exclusion, crop rotation, sanitation, and biological control. These methods augment other pest control programs designed to minimize pesticide usage.

Biological Control

The biological control of pests involves exposing them to predators or parasites. The use of predators and parasites is usually accompanied by a program in which pest-damaged fields are scouted and pest population estimates are made. Predators and parasites are then released by the millions to assure control of the target pest.

China (or People’s Republic of China), country in e. Asia; area 3,692,000 sq mi (9,561,000 sq km); cap. Beijing; pop. 1,165,888,000. Circa 1995.

Biological pest control was used by the ancient Chinese, who used predacious ants to control plant-eating insects. In 1776, predators were recommended for the control of bedbugs. The modern era of biological pest control began in 1888, when the vedalia beetle was imported from Australia to California to control the cottony-cushion scale insect. This biological control project saved the citrus-fruit industry.

Insect predators also have been used to control the bean beetle, tomato horn worms, and aphids. Another biological method is the use of bacteria against grubs, or insect larvae. For example, the bacterium Bacillus thuringiensis is used to control the caterpillar larvae of the gypsy moth, as well as the larvae of mosquitoes In the 1980s, mosquito-eating fish and nematodes that prey on such soil insects as corn root worms were introduced as biological-control agents.

Since the 18th century, the breeding of host plants for pest resistance also has been used to control pests. Wheat has been the object of the most extensive plant-resistance research. Effective wheat-breeding programs have led to the development of new wheat varieties that are resistant to rusts various parasitic fungi that infect the leaves and stems of the plant. Corn breeding has resulted in varieties resistant to other fungal diseases, including smut and leaf blight. The classic example of this plant-resistance approach to pest control was the control of phylloxera, insects that attacked the root stock of the European wine grape and almost completely ruined the European wine industry. The problem was solved by grafting the European plants onto the resistant American wine grape root stock.

The development of insect predators to control structural pests has met with little success. Nematodes have been used against termites in laboratories, but field tests have not been successful. Parasitic wasps used against various cockroach species have also been unsuccessful in the field.

Other Controls

Cultural control methods are used to alter the pest’s environment and thereby reduce access to breeding areas, food, and shelter. Cultural methods have been used to control the yellow-fever mosquito, which breeds in swamps and small pools of water. With the draining of swamps and the elimination of stagnant pools and other containers where water accumulates, the number of potential breeding places for the pest is reduced. Cultural control has also been used against structural pests, which depend on protected places such as cracks in side walks, roads, or buildings; garbage; and weeds for survival. Structural pests are often effectively deterred when openings to potential hiding places are sealed and debris and refuse are eliminated.

Crops are sometimes protected from harmful pests through diverse planting techniques. Crop rotation, for example, prevents the development of fungus and bacterium populations. Open-area planting relies on the wind to hinder flies and other insects that damage vegetable crops.

Physical or mechanical control methods are effective against some pests. Such controls include sticky barriers, heat killing (for storage pests), and flooding (for ground pests). Pressure-treated wood is protected against many wood-damaging fungi and insects. Traps are another mechanical method of pest control. Some traps are designed to either kill or capture rodents and other vertebrate pests. Netting and metal shields are used to keep birds from damaging fruit crops or from roosting on buildings. Electrical light traps attract insects and electrocute them. In some buildings, fans are installed above doors to prevent the entry of flying insects.

An area of pest-control research that has received much attention in recent years involves baiting traps with the pest’s own sex attractants, or pheromones. Pheromone traps have been used extensively against the fruit fly and gypsy moth. Pheromones are also being used to attract and trap pests that infest stored foods and grains.

Many countries use importation and quarantine regulations to control the importation of foreign plant or insect pests. Fruit is especially prone to insect infestation and disease. In the United States, the Animal and Plant Health Inspection Service monitors incoming products and materials and requires certain products to be treated prior to entry. Similar controls exist in other countries. Some regions have quarantine regulations to ensure that certain insect pests are not brought into the area. In the United States, individual states have their own inspection services. Some states even have border inspection stations to prevent unauthorized transport of plants across state lines.

Assisted by George W. Rambo.

CORN (Part 1 of 2)   Leave a comment

 

5000 BC: Cultivation of maize. The primary grain in use in North America prior to the European discovery was maize, now called corn in some countries. It was probably grown first by the inhabitants of Mexico. After the arrival of Europeans in the Americas, corn was sent to many parts of the world and is in use nearly everywhere today, often as feed grain for animals.

Maize is unique from other grains in that botanists do not know how the plant evolved. In the Old World, no evidence exists of maize in archaeological remains, and no mention of it is made in ancient writings. It is believed to have evolved solely in the Western Hemisphere.

In the United States, Canada, and Australia the term corn refers to maize, or what is sometimes known as Indian corn. The rest of the world calls this grain maize. (This grain is known in South Africa, however, as mealies.) In England the word corn refers to wheat, and in Scotland and Ireland it refers to oats. This article uses the word corn to refer to maize.

Upon returning from the New World, Christopher Columbus and other explorers introduced corn into Europe, where it was previously unknown. Since that time corn has spread into all areas of the world suitable to its cultivation. Corn was served at the first Thanksgiving Day feast in America in 1621. In modern times, it has become a popular snack for movie viewers in the form of popcorn.

After wheat and rice, farmers the world over use more land for corn than for any other grain crop. More than 319 million acres (129 million hectares) of corn are planted worldwide each year. Most of the corn grown is the coarser kind called field corn. It is not grown for people to eat. Farmers feed it to pigs, cattle, and other livestock. Out of every 100 bushels grown, farmers store half in silos or in bins for feeding livestock. For this reason the value of the corn crop cannot be measured by what is sold as grain. Most of the yearly crop “goes to market on four legs” as pigs and cattle. Thus a large part of the multi billion-dollar corn harvest never reaches the grain market.

Where Corn Grows Throughout the World

Out of every four bushels of corn grown in the world, farmers in the United States produce one. Many states grow corn. Most of it, however, is raised in the famous Corn Belt. This vast fertile region extends across the north-central plains from western Ohio to eastern Nebraska. The top-ranking corn-producing states are Iowa, Illinois, Nebraska, Minnesota, Indiana, and Wisconsin. Corn will grow wherever it has suitable soil, freedom from frost and cold nights, and plenty of hot sun when it is maturing. It also needs ample soil moisture during the hot season.

These conditions are also found in much of Central and South America, around the Mediterranean, in India, and in South Africa. The largest producers of corn, after the United States, are China and Brazil. Other large corn-producing countries are Mexico, India, Indonesia, South Africa, and the Philippines.

An Obscure Ancestry

Some botanists believe that members of the amaranth, or tassel flower, family may have been the wild ancestors of the corn plant. But even in the time of Columbus, corn could not fertilize itself, as do most wild plants or recent descendants of wild plants. The greatest weakness lay in the way corn produces its seed. The top of the stalk has a many-spiked tassel which grows pollen. The plant also has ears with filaments called silks which receive pollen. But the ears are completely wrapped with leaves, and the ends of the silks protrude only from the tips. Therefore the silks cannot get ample pollen unless the plants have many neighbours, as they do in a cultivated field. Botanists think that the plants could hardly survive in the wild state. Corn was apparently unknown in ancient times in the Old World. No evidence of it has ever been found in archaeological remains. There is no reference to it in the Bible or other ancient literature or in primitive art. The word corn in the Bible refers to wheat, not the American maize.

In the New World, however, all the principal types of corn that scientists recognize today were already in existence and under cultivation when the first explorers arrived. The wild ancestor of corn probably came from the Western Hemisphere.

Some botanists think the plant may be descended from teosinte, a grass that grows wild in Mexico and Guatemala. Another theory is that it originated in South America from a primitive pod corn which was also a popcorn. Pod corn kernels are enclosed in pods or chaffy shells. Such a wild corn has not been found.

Ancient Corn in New Mexico

In 1948, scientists of the Peabody Museum, Harvard University, discovered ancient corn in a cave in central New Mexico. The lowest levels of the cave floor contained primitive husks and kernels estimated to be 4,000 years old. This corn bore no relationship to teosinte, but it did have the characteristics of pod popcorn.

In upper and more recent deposits the scientists found corn that appeared to have been crossed with teosinte. Modern corn may therefore be a hybrid of teosinte and wild species which no longer exist, but the mystery is still unsolved.

The Corn Plant and Its Seed

The corn plant is a large member of the grass family (Gramineae). It has a fibrous, woody stalk that may grow to be from 6 to 20 feet high. At the top is its spiked tassel. This part produces the male flowers of the plant. Farther down, the stalk grows one or more spikes which develop into ears. Each one grows out from beneath the base of a leaf, and at first it is completely wrapped in leaves. The spikes bear threadlike filaments (silk) which are the female flowers. Each filament grows from a germ on the spike called an ovule.

The ovules are arranged in rows along the spikes. Each one will produce a seed, or kernel, if the filament of silk is fertilized by a pollen grain. To catch pollen, the green, tender tips of silk protrude from the top of the leafy wrapping around the spike.

All these parts appear after the stalk and leaves are well grown and the plant is receiving plenty of summer sunshine. When the flower parts develop, farmers say that the corn is tasselling out. Soon the tassels produce yellowish dust like grains of pollen. Each grain of pollen contains two sperms.

How Fertilization Takes Place

Now summer breezes gently shake the pollen-laden tassels, and billions of the tiny, sperm-bearing pollen grains jar loose. The wind carries them to the silk of neighbouring plants. Tiny receivers, called stigmas, at the ends of the silks, catch the pollen. Promptly the pollen grains send tubes growing down through the silks to the ovules. Then the sperm cells pass down the tubes and fertilize the ovules. Thereupon the spike grows into a large, pithy structure called a cob, while the ovules grow and ripen into seeds (kernels).

The growing seeds are made up of a soft yellow hull filled with milky liquid. Corn at this stage is in the milk. The milk has a sweet flavour, and field corn in the milk stage may be used as roasting ears. When field corn is ripe, the kernels are hard, firm, and starchy. Sweet-corn kernels do not get as hard.

Colours of Corn

When the first European settlers came to America, they found corn with different coloured kernels. The Indians liked particular colours for certain purposes and tried to grow them.

The pioneers preferred the yellow kind for field corn. About 1779 sweet corn was discovered in Pennsylvania. Gradually farmers began to save seed from desirable plants for planting the following year.

Posted 2012/03/04 by Stelios in Education

Tagged with ,

CORN (Part 2 of 2)   Leave a comment

How Experimenters Developed Hybrid Corn

In 1905 George H. Shull and Edward M. East began developing new kinds of corn by placing pollen from one desirable strain of corn onto the silks of another strain. The process produced cross-bred strains called hybrid corn. After World War I, Henry A. Wallace (who became secretary of agriculture in 1933) and Lester Pfister began hybridizing experiments. By 1926 they had made hybrid pollinization completely workable.

The hybrid plants are remarkable growers. They commonly grow to be 18 or 20 feet tall; some have grown as high as 28 feet. A more important factor is that they have added millions of dollars to the income of corn farmers.

Before farmers had hybrid corn, an average acre of corn yielded 30 bushels. But farmers had to spend the money they received for 25 bushels to pay their costs for each acre planted, leaving only 5 bushels an acre for profit. Hybrid corn has raised the national average to more then 95 bushels an acre. Some states average more than 130 bushels an acre.

A hybridizer produces hybrid seed by first inbreeding. This fixes desirable qualities in the seed. He covers the ears of selected plants to keep airborne pollen from the silk. Later, he takes pollen from the tassels of a plant and dusts it on the silks of the same plant. After inbreeding each strain for several generations, he starts cross-breeding He takes pollen from the tassel of a plant having one desirable strain and dusts it on the silk of a plant with some other strain. The cross-bred product, or hybrid, has the qualities of each parent strain.

Next comes double-crossing. The experimenter dusts pollen from one hybrid onto a hybrid with two other strains. The seed from this cross produces a super corn with four strains bred in. This corn is sold to farmers as seed. Their crop cannot be used as seed next year because hybrid corn is not self-perpetuating. Farmers must buy new seed each year. Great use of hybrid corn threatens the supply of corn pollinated naturally. This loss would restrict improving hybrid strains and prevent developing new ones. To preserve seed of native varieties, the federal government stores seed in corn banks.

Planting and Cultivating

A strong, full crop of corn comes from fertile soil, good seed, thorough cultivation, and clean culture. The soil should be easily worked, well drained, and rich in plant food. The dark loam of the Midwestern United States is particularly well adapted for corn. The farmer chooses the seed to suit conditions on his land. In dry regions he may plant corn in deep furrows. If rainfall is plentiful he puts the seed down in hills or in drills. Once the plant starts to grow, cultivation must never be deep, or the tender, grass like roots will be injured.

Corn draws heavily on the plant food in the soil. Production is higher when corn crops are rotated on a three-year cycle. The first year a legume, such as alfalfa or sweet clover, builds up the soil with nitrogen and humus. The next year corn grows tall on these, its favourite foods. The third year a small grain is planted. Then the cycle is renewed with a legume.

Different Ways of Harvesting

If the farmer wants to store the whole plant in a silo, he cuts the corn while it is still green. If the corn is to be used for grain, it is not harvested until it is fairly dry. The ears may be picked by hand from the standing corn and husked and thrown into a wagon. On most farms mechanical corn pickers are used.

Some farmers turn cattle in to feed on the corn stalks after the ears are picked. Others cut the stalks, tie them into shocks, and let the ears get dry before husking. Many livestock raisers turn hogs into the ripe fields to feed and fatten on the corn. This method is called hogging down.

Fighting the Enemies of Corn

Corn ear worm (also called tomato fruit worm, or tobacco bud worm, or cotton boll worm), larva of a moth (Heliothis armiger); names vary depending on the various plants it infests; larvae on corn first eat the leaves, then the ears; pupation occurs in the ground; winter ploughing in North kills many pupae.

More than 350 insect pests attack the grain. The most destructive are the corn ear worm, the European corn borer, and the corn root worm Fungus growths, such as smut and various rots, are costly foes. In many cases insecticides are too expensive to be practical. Therefore the farmer uses the less expensive methods of clean culture and crop rotation. Clean culture means harvesting or destroying every part of the plant. Careful farmers either burn or plough under the stubble. This rids the cornfield of pests that live above the ground. Crop rotation suppresses root pests that live on corn by depriving them of food for one or two years.

Composition of a Corn Kernel

A kernel of corn is wrapped in a tough, fibrous outer hull (bran). Inside is the germ, or embryo, from which the new plant develops. Around the germ is a food supply called endosperm. This is chiefly starch. When the kernel germinates it draws its nourishment from the endosperm until it can put forth roots and leaves and obtain food from the soil and the air.

The moisture content of a kernel varies from 10 to 25 percent, depending upon weather and other conditions under which it was grown. Of the dry portion, about 70 percent is starch (carbohydrates). About 10 percent is gluten (protein), found in a shallow layer just under the hull. The remainder is fat or oil in the germ (4.5 percent), fibre in the hull, and minerals.

A Great Variety of Corn Products

All the parts of a corn kernel can be used to make products. From the whole kernels manufacturers make cornmeal, breakfast foods, and hominy. Some people make hominy at home by removing the hull with lye and cooking the whole grain. When the kernel is crushed it forms hominy grits. Distillers make alcohol and whiskey from whole corn kernels.

Since corn became so dominant a grain in American agriculture, it has naturally found its way to Europe and Asia. There, whether imported or grown locally, it is used mostly for animal feed, as it is in the United States. For humans, corn is less desirable nutritionally than for livestock. The protein value is of low quality, and corn is devoid of niacin one of the B-vitamins that is essential to humans. People who rely heavily on corn in their diets are subject to such niacin-deficiency diseases as pellagra. Corn cannot be used to make leavened bread, although it is much used in Latin America to make dough for such flat breads as tortillas.

The corn products refining, or wet-milling, industry makes a great variety of products from different parts of the corn kernel. Wet milling is so called because the kernels are steeped in tanks of water to soften them, and water is used in the processes that separate germ, gluten, and starch.

First to be separated from the kernel is the germ. Refined and crude corn oil have many uses as human and animal food and in industry. When oil is pressed from the germ a hard cake is left. It is ground into stock feed. One of the proteins in gluten is zein. A synthetic fibre is made from it. It is also used in lacquer, plastics, textile colours, and printing inks.

The final product of the wet-milling separation process is starch. The housewife, food manufacturers, and laundries have many uses for cornstarch. Paper manufacturers use more starch than any other industry to toughen and size (glaze) paper. Textile manufacturers are second. Cotton and synthetic yarns and fabrics are sized with starch.

Glucose (or dextrose, or grape sugar, or corn sugar), simple (monosaccharide) sugar found in fruits and other foods and in the blood of animals; fuels the energy needs for most living organisms.

A huge amount of starch is converted into corn syrups (glucose), sugars, and dextrose by cooking and chemical treatment. These too have countless uses in cooking and in various industrial processes. Even the steep water in which the kernels are soaked is important. Evaporated to a thick, soupy liquid, it is used as a food for the moulds that produce penicillin and other wonder drugs.

Corncobs are ground for a coarse livestock feed. They are used also in a polishing powder, insulation, and a form of sandblasting. Furfural, an oily liquid extracted from corncobs, goes into man-made fibres, drugs, and solvents. Some specially grown cobs are made into pipes for smoking.

Millions of tons of cornstalks are made into a rubber substitute, maizolith. A large quantity is used for making paper and wall board Even the gases from fermenting corn are used to make methyl alcohol.

American Indians had many kinds of corn, and there are now more than 1,000 named varieties. The smallest is the golden thumb popcorn plant, about 18 inches (46 centimetres) high. Some varieties have only eight rows of kernels; others, as many as 48 rows. Colours include white and shades of yellow, red, and blue.

The chief types of corn are pod, soft, sweet, pop, flint, and dent corn. Pod corn has each kernel enclosed in a pod or husk. Soft corn is used for corn flour and for roasting ears. Sweet corn has the smallest amount of starch; popcorn, the highest. Flint and dent corns lead all other varieties on the grain markets and for livestock feeding. The scientific name of corn is Zea mays.

Posted 2012/03/04 by Stelios in Education

Tagged with , , , , ,

INSECTS (Part 2 of 2).   Leave a comment

CLASSIFICATION

Insects belong to the phylum Arthropoda, one of the chief divisions of the animal kingdom. The name comes from two Greek words, arthron (“joint”) and podos (“foot”), and refers to the jointed feet. Arthropods also include spiders, lobsters, centipedes, and other animals. In this phylum, insects belong to the class Insecta. Each insect has two parts to its scientific name. For example, the housefly is Musca domestica. The first half of the name is that of the genus (a group of closely related species) to which the species domestica belongs. The many thousands of insect genera (plural of genus) are grouped under more than 900 families. These families, in turn, are grouped under as many as 30 orders.

To summarize, the housefly is classified as follows: kingdom, Animalia; phylum, Arthropoda; class, Insecta (Hexapoda); order, Diptera; family, Muscidae; genus, Musca; species, domestica. Each of these groups is often divided even further into subgroups (subphylum, subclass, suborder, and so on).

Ancestors of the Modern Insect

Insects appeared on Earth long before the advent of humans or the earliest mammals. The first insects probably evolved from primitive ringed worms. These insect ancestors were wingless and developed without metamorphosis, as do today’s silverfish.

The oldest fossils of ancestral insect forms are believed to be some 350 million years old. There are also fossil records, from later eras, of highly developed forms very similar to the mayflies, cockroaches, and dragonflies now in existence. Some ancient insects were truly huge; dragonflies, for example, had a wingspread of 2 feet (0.61 meter) or more.

THE IMPORTANCE OF INSECTS TO HUMANS

Insects that attack humans or anything of value to humans are termed pests; many of these are mutually competitive with humans for the world’s food supply. Other insects are benefactors of humans, as they devour the carcasses of dead animals, pollinate orchards, manufacture honey, or simply serve as another link in the food chain of the animal kingdom, for humans eat the animals including fish and birds which, in turn, live upon the insects.

HARMFUL INSECTS

About 10,000 species of insects have been classified as pests. Some are disease carriers, afflicting and often killing humans. Many insects prey upon domestic animals; others eat human food, clothing, and other possessions. Still others, in their quest for food or lodging, destroy trees, wood, and paper.

Carriers of Disease

 

Following are the names of some insects and the diseases they carry, and what may happen to someone who gets the disease.

INSECT

DISEASE CARRIED

RESULT

Tsetse fly

African sleeping sickness

Death

Mosquito

Yellow fever

Encephalitis

Malaria

Liver damage

Death

Chills

Fever

Rat flea

Bubonic plague

Death

Human louse

Typhus

Fever

Depression

Assassin bug

Chagas’ disease

Heart damage

Brain damage

Blindness

 

As vectors, or transmitting agents, of disease organisms, insects have caused more deaths and have inflicted greater misery and hardship on humankind than all the wars of history. In their efforts to find food, insects wage their own war against the human race. Some feed upon humans directly. Notable among these are the true flies, including mosquitoes, horseflies, black flies, tsetse flies, and other two-winged pests.

Perhaps humankind’s worst enemy among the insects is the mosquito. More lives have been lost as a result of malaria, yellow fever, encephalitis, and other mosquito-borne diseases than from all the other insect-borne diseases combined.

The tsetse fly has been a serious deterrent to the development of much of tropical Africa, for the insect acts as a vector of trypanosomiasis (African sleeping sickness) among humans and of nagana, a serious disease of livestock.

Horseflies and stable flies also transmit disease through their bites. The common housefly is not a biter, but it can carry myriad disease organisms on the hairs and the sticky secretions of its body. The assassin, or kissing, bug transmits the highly fatal Chagas’ disease.

Bedbugs, fleas, and lice live on the blood of birds and mammals, including humans. The human louse lives on the blood of humans alone and transmits typhus, relapsing fever, and trench fever.

The flea is potentially one of humankind’s deadliest enemies; rat fleas, for example, carry the germs of murine typhus and bubonic plague, which was instrumental in wiping out the lives of one fourth of the population of Europe in four years.

Household Pests

Insect pests in the home are most commonly chewers. One of the most troublesome of these the clothes moth attacks furs, woollens, and materials made of hair.

The silverfish and the fire-brat eat sized or stiffened material, such as the paper and bindings of books and starched clothing and curtains. In some parts of the United States, termites do considerable damage to furniture and paper products, as well as to the timber frameworks of buildings.

Plant-Eating Pests

Most insects are herbivorous that is, they feed on plants. Virtually every part of a plant, from the flower to the root, is vulnerable to their attack. They do their damage in a variety of ways.

Insects with chewing mouth-parts are the most destructive plant eaters. A horde of grasshoppers, for example, can strip every blade of vegetation from a field in a few hours. The destruction caused by other chewing insects, such as beetles, can also be enormous.

Insects with sucking mouth-parts, though usually smaller and less conspicuous than the chewers, also do a great deal of damage to farm crops and to forest and garden plants. These insects pierce plant tissues and draw out the vital juices. These insects include the aphids, chinch bugs, cicadas, and scale insects.

Damage is also done to the host plant from within by many other plant pests usually as larvae. Some eat their way between the top and bottom layers of a leaf, giving it a blotched appearance. The leaf roller, the larval form of certain moths, rolls a leaf into a tube and spins silk to hold it together. The caterpillar then feeds on the leaf. Other insect pests tie several leaves together into a large nest.

Gall-flies cause swellings on buds, flowers, leaves, stems, bark, or roots of plants. Usually the female pierces the plant and lays an egg; the plant then grows a gall, or swelling, around the egg.

Insect Immigrants Upset Nature’s Balance

As long as a region is left in its natural state, no species of insect is likely to increase disproportionately in numbers. The balance of nature prevents this from happening. Every insect has natural enemies, such as the spider, the praying mantis, and many kinds of disease organisms, that help keep the number of insects down.

The balance of nature in the New World was upset when settlers from Europe brought their domestic plants with them. Many insects that were harboured by these plants escaped the natural controls that were present in their old environments and became pests. The widespread use of such insecticides as DDT, now largely discontinued, also disrupted the balance of nature in some areas.

Pests arrive in many ways and from many lands. The gypsy moth, for example, was brought to the United States for experiments in the 1860s. It escaped from the laboratory and before the end of the 19th century had cost millions of dollars annually in damage to shade trees. The Argentine ant, an enemy of field crops and stored foods, was a stowaway in a cargo that reached New Orleans, La., in 1891. The brown-tail moth, another shade-tree pest, reached New England from Europe in about 1897. The alfalfa weevil came to Utah in 1902 in soil adhering to imported plants. The corn borer was carried from southern Europe in 1909 in a shipment of broom-corn Two serious pests came from Japan the Oriental fruit moth, on cherry trees presented by the city of Tokyo to Washington, D.C., in 1913; and the Japanese beetle, on trees reaching New Jersey in 1916. Also in 1916, carloads of cotton-seed from Mexico brought in the pink boll-worm Four arrived in 1920: the satin moth, an enemy of shade trees; the Asiatic beetle, which destroys lawns; the Mexican bean beetle, which feeds on a variety of beans; and the Mediterranean fruit fly, which is highly destructive of fruits, nuts, and vegetables.

METHODS OF INSECT CONTROL

Until the middle of the 19th century Americans were helpless against the growing insect menace. Finally, in the 1860s, arsenic compounds were found to be effective in combating the Colorado potato beetle. This was the first successful control of insect pests by scientific means. In the Morrill Act, in 1862, Congress provided for the study of insect pests and other agricultural problems.

Six principal methods are used in the control of insect pests. These methods are chemical, mechanical, radiological, cultural, biological, and legal.

Chemical. The chemical substances used to destroy insects are called insecticides. These may be broadly classified as stomach poisons, contact poisons, fumigants, and sorptive dusts. The stomach poisons are more effective against the chewing insects; the contact poisons, against sucking insects. Fumigants are gaseous poisons that enter the insect’s breathing system. Sorptive dusts are dry chemical compounds that kill insects by absorbing fatty substances from the exoskeleton, thus causing vital body fluids to evaporate.

Mechanical. Mechanical methods of insect control often primitive and time-consuming are generally less effective than chemical methods. They can seldom be applied practically to large populations of insects or over wide areas. These methods include swatting, the use of traps and barriers, water control, and temperature control. Water control involves adjustment of the water level or the rate of flow in breeding places. Temperature control is sometimes effective against insects that infest enclosed storage facilities. Reducing the temperature to 40 or 50 F (4 or 10 C) will cause most insects to become dormant; raising the temperature to 130 F (54 C) for three hours is sufficient to kill almost any insect.

Radiological. Perhaps the most dramatic, wholesale destruction of insects can be accomplished by making them infertile. Sexual sterility in male insects is induced by treating them with the rays of radioactive cobalt. If a large number of a particular species undergo this process in the laboratory, the treated males though sterile will still mate with fertile females; but the eggs laid by these females will be sterile. Following continual releases of sterile males in a single area, the number of young can be gradually reduced over a period of several generations until the population of the insect is totally wiped out within that area.

Through this technique the screw-fly, a serious pest of cattle, was first eradicated from the island of Curacao in the West Indies in 1954. Radiological warfare was then used to bring the screw-fly under control in the south-eastern United States.

Cultural. The cultural control of insect pests is of special interest to the farmer. Methods include the destruction of plant residues and weeds, crop tillage, crop rotation, and the growing of insect-resistant strains of crops.

Four things that farmers can do to control insects are

1. destroy plant residues and weeds. This can kill insects that are hibernating so they will not reproduce the following year.

2. crop tillage. This means to plough plants that have finished growing so they go back down into the soil and replenish the land. If a farmer ploughs at the right time of year, many insects living in the soil are killed.

3. crop rotation. This means to change the type of crop grown in a certain field in different seasons. Insect numbers are kept down when a farmer switches to a crop that insects do not like to eat.

4. insect-resistant strains. These are crops that insects do not like to eat. Developing insect-resistant strains of food limits insect populations.

When the farmer destroys the crop residues and weeds, he also destroys hibernating insects that would otherwise reproduce the following season. By ploughing or cultivating at the right time of year, he can often eliminate large numbers of harmful insects living in the soil. Crop rotation is an important means of combating insect pests of field crops, for many such pests will feed on only a single species or a single family of plant. Thus, if a farmer grows a grain one season and a legume the next, populations of many grain pests (as well as legume pests) can be kept down or eliminated.

Insect-resistant strains of many crops have been developed. Many of these strains have been developed by means of genetic engineering techniques. Resistance to the European corn borer, the wire-worm, and the chinch bug, for example, has been obtained in a single corn hybrid through selective breeding.

Biological. The control of insects by biological means involves the application of the pest’s natural enemies. These enemies may be microbes, mites, or other insects. Scientists have succeeded in controlling harmful insects by first determining the major predators or parasites of that insect in its country of origin. Then the scientists introduced these natural enemies as control agents in the new country that the pest had infested. A classic example is the cottony cushion scale, which threatened the survival of the California citrus industry in 1886. The predatory ladybird beetle, or vedalia beetle, was introduced from Australia, and within two years the scale insect had virtually disappeared from California.

In eastern Canada in the early 1940s the vicious European spruce sawfly was completely controlled by the spontaneous appearance of a viral plant disease, perhaps unknowingly introduced from Europe. This event led to increased interest in plant diseases as potential means of pest control.

Legal. The legal control of insects concerns government regulations to prevent the spread of insect pests from one country or region to another. The Federal Plant Quarantine Act of 1912 began the fight against imported pests by providing for inspectors at ports of entry. These officials examine all plant products as well as passengers’ baggage. Infested material is destroyed or thoroughly fumigated. Aircraft are examined and may be fumigated as soon as they arrive in the United States from countries where insect pests are a potential threat.

By the time an immigrant pest is discovered in domestic plants, it is usually too late for eradication of the injurious insect. In some instances, however, control has been achieved. In 1929 the Mediterranean fruit fly was detected in Florida orchards; the insects threatened ruin to the fruit crop. State and federal entomologists united for battle, and all Florida was quarantined. Abandoned and run-down orchards were destroyed. Chemists developed new poison sprays. By the end of the summer not a “medfly” could be found in Florida. In 1956 a second such outbreak occurred; this too was put down after several months of intensive warfare.

In 1981 a serious spread of the medfly threatened California’s agricultural regions with economic disaster. The pest had been imported accidentally in 1980. An attempt to control the insects by importing sterilized males from Peru failed. The Department of Agriculture threatened to quarantine the state’s produce unless the infected areas were fumigated. Governor Jerry Brown finally authorized helicopter spraying of the pesticide called malathion in July 1981. The spraying halted the threat to the California crops.

BENEFICIAL INSECTS

Numerous species of plants depend upon insects to pollinate them. In visiting flowers for nectar, insects carry pollen from one flower to the pistil of another. In this way they fertilize the plant and enable it to make seeds.

Without insects there would be no orchard fruits or berries. Tomatoes, peas, onions, cabbages, and many other vegetables would not exist. There would be no clover or alfalfa. The animals that need these forage crops would be of poor quality, and humankind’s meat supply would suffer. There would be no linen or cotton; no tea, coffee, or chocolate.

The honeybee produces honey and wax. Silk is made by the silkworm larva. Shellac is secreted by an Oriental scale insect. Such insects as the dobsonfly are used in sport fishing as bait.

In many underdeveloped areas of the world grasshoppers, caterpillars, and other insects are necessary to humans as food. Insects are also important to humans as food for other animals. Freshwater fishes depend upon insects for food. Hundreds of species of birds would perish if there were no insects to eat.

Insects have also played a significant role in the biological laboratory. The Drosophila fly, in particular, has been valuable in the study of inherited characteristics. The European blister beetle, or Spanish fly, is helpful in the fight against human disease, for it secretes cantharidin, a substance used medically as a blistering agent.

Many insects are invaluable as predators on insects that are pests to humans. In the same way, plant-eating insects are often valuable for their destruction of weeds. Insects that burrow in the earth improve the physical and chemical condition of the soil.

As scavengers, insects perform the important function of eating dead plants and animals. The housefly, scorned as a disease carrier, is beneficial in its larval form the maggot. It feeds on decaying refuse and in this way makes the world somewhat cleaner and more habitable for others.

The Principal Insect Orders

In the following list are the principal orders within the two subclasses of the class Insecta. Several obscure orders with relatively few species are omitted. The orders of the most primitive groups are given at the beginning of the list; the most highly developed at the end. After the name of each order, its meaning is given. The suffix -ptera means “wing”; -aptera, “wingless”; -ura, “tail.”

Subclass Apterygota

(wingless, no metamorphosis)

Thysanura (“tassel tail”) silverfish, bristle-tails, and fire-brats; wingless, scaly, three long bristles at the end of the body.

Collembola (“glue bolt”) spring-tails; tiny, wingless; jump by means of a springlike appendage below the abdomen.

Subclass Pterygota

(winged, undergo metamorphosis)

The following 11 orders are sometimes known as the Exopterygota. These have incomplete metamorphosis.

Orthoptera (“straight wings”) cockroaches, grasshoppers, crickets, walking-sticks, mantids, katydids, locusts, and their allies; fore-wings leathery; hind wings folded fan-wise

Dermaptera (“skin wings”) earwigs; fore-wings short; abdomen ends in a forceps-like appendage.

Plecoptera (“braided wings”) stone flies; membranous wings fold flat over the back; aquatic nymphs breathe with gills.

Isoptera (“equal wings”) termites; social insects with a caste system; resemble ants but have a broad, rather than narrow, waist.

Psocoptera (“gnawers”) psocids, book lice, and their allies; winged or wingless; feed on books and museum specimens.

Mallophaga (“wool eaters”) biting lice; flat, with chewing mouth-parts; external parasites of birds and certain warm-blooded animals.

Ephemeroptera (“living but a day”) mayflies; night-flying, delicate, short-lived; with membranous wings and two or three long tail filaments; nymphs aquatic; adults do not feed.

Anoplura (“unarmed tail”) sucking lice; with piercing mouth-parts for feeding on blood; external parasites of mammals.

Thysanoptera (“fringed wings”) thrips; usually four minute narrow fringed wings; pests of cultivated plants, spread viral plant diseases.

Hemiptera (“half wings”) (includes the order Homoptera) true bugs, aphids, leaf-hoppers, scales, and their allies; mostly four-winged, with piercing or sucking mouth-parts; many are plant pests.

Odonata (“toothed”) dragonflies and damselflies; two similar pairs of long, narrow wings; dragonflies keep wings outstretched at rest, damselflies keep them together over the back.

The remaining orders are sometimes known as the Endopterygota. These have complete metamorphosis.

Neuroptera (“nerve wings”) lacewings, ant lions, snake flies, and dobsonflies; two similar pairs of large, membranous wings, usually folded roof-like over the body when at rest.

Mecoptera (“long wings”) scorpion flies; long-faced, narrow-winged; in some males tip of abdomen curls over the back as a scorpion’s does.

Trichoptera (“hair wings”) caddis flies; adults moth-like but with longer antennae and uncoiled proboscis; larvae aquatic, make fixed or portable cases in which they live and pupate.

Lepidoptera (“scale wings”) moths and butterflies; wings covered with minute, overlapping scales; coiled proboscis usually present.

Coleoptera (“sheath wings”) beetles and weevils; fore-wings hard, vein-less, and opaque, meeting in a straight line; hind wings membranous, translucent; the largest order of insects, numbering some 300,000 species.

Strepsiptera (“twisted wings”) males winged, females wingless; females of most species are parasites on other insects.

Hymenoptera (“membrane wings”) wasps, ants, bees, and their allies; many species useful to man; ovipositors in some females modified as a stinger.

Diptera (“two wings”) true flies, mosquitoes, and midges; two developed wings; mouth-parts variable; many species pupate inside the last larval skin.

Siphonaptera (“siphon wingless”) fleas; tiny, jumping insects with narrow bodies adapted for moving between the hairs of animal hosts, whose blood they suck; some species transmit disease.

Assisted by Thomas Park, Professor Emeritus of Biology, University of Chicago; former President, Ecological Society of America. Critically reviewed and updated by J. Whitfield Gibbons, Senior Research Ecologist and Professor of Zoology, Savannah River Ecology Laboratory, University of Georgia.

BIBLIOGRAPHY FOR INSECT

Barbosa, Pedro and Jack Schultz. Insect Outbreaks (Academic Press, 1987).

Better Homes and Gardens Editors. Bugs, Bugs, Bugs (BH&G, 1989).

Blum, Murray. Fundamentals of Insect Physiology (Wiley, 1985).

Borror, Donald. An Introduction to the Study of Insects (Saunders College Publications, 1989).

Boy Scouts of America. Insect Study (BSA, 1985).

Burton, John. The Oxford Book of Insects (Oxford, 1982).

Gattis, L.S. Insects for Pathfinders (Cheetah Publications, 1987).

Goor, Ron and Nancy Goor. Insect Metamorphosis (Macmillan, 1990).

Higley, Leon. Manual of Entomology and Pest Management (Macmillan, 1989).

Horton, B.G. and others. Amazing Fact Book of Insects (Creative Editors, 1987).

Leahy, Christopher. Peterson Field Guide to Insects (Houghton, 1987).

Line, Les and Lorus Milne. The Audubon Society Book of Insects (Abrams, 1983).

Mayer, Daniel and Connie Mayer. Bugs: How to Raise Insects for Fun and Profit (And Books, 1983).

Seymour, Peter. Insects: A Close-Up Look (Macmillan, 1985).

Stiling, Peter. An Introduction to Insect Pests and Their Control (Macmillan, 1985).