Archive for the ‘NOBLE GAS’ Tag

KRYPTON   Leave a comment

Krypton (from Greek: κρυπτός kryptos “the hidden one”) is a chemical element with symbol Kr and atomic number 36. It is a member of group 18 (noble gases) elements. A colourless, odourless, tasteless noble gas, krypton occurs in trace amounts in the atmosphere, is isolated by fractionally distilling liquified air, and is often used with other rare gases in fluorescent lamps. Krypton is inert for most practical purposes.

Krypton, like the other noble gases, can be used in lighting and photography. Krypton light has a large number of spectral lines, and krypton’s high light output in plasmas allows it to play an important role in many high-powered gas lasers (krypton ion and excimer lasers), which pick out one of the many spectral lines to amplify. There is also a specific krypton fluoride laser. The high power and relative ease of operation of krypton discharge tubes caused (from 1960 to 1983) the official length of a meter to be defined in terms of the 605 nm (red-orange) spectral line of krypton-86.



Krypton was discovered in Britain in 1898 by Sir William Ramsay, a Scottish chemist, and Morris Travers, an English chemist, in residue left from evaporating nearly all components of liquid air. Neon was discovered by a similar procedure by the same workers just a few weeks later.


William Ramsay was awarded the 1904 Nobel Prize in Chemistry for discovery of a series of noble gases, including krypton.


In 1960, an international agreement defined the meter in terms of wavelength of light emitted by the krypton-86 isotope (wavelength of 605.78 nanometres). This agreement replaced the long-standing standard meter located in Paris, which was a metal bar made of a platinum-iridium alloy (the bar was originally estimated to be one ten-millionth of a quadrant of the Earth’s polar circumference), and was itself replaced by a definition based on the speed of light — a fundamental physical constant. However, in 1927, the International Conference on Weights and Measures had redefined the meter in terms of a red cadmium spectral line (1 m = 1,553,164.13 wavelengths). In October 1983, the same bureau defined the meter as the distance that light travels in a vacuum during 1/299,792,458 s.



Krypton is characterized by several sharp emission lines (spectral signatures) the strongest being green and yellow. It is one of the products of uranium fission. Solidified krypton is white and crystalline with a face-centred cubic crystal structure, which is a common property of all noble gases (except helium, with a hexagonal close-packed crystal structure).



Naturally occurring krypton is made of six stable isotopes. In addition, about thirty unstable isotopes and isomers are known. 81Kr, the product of atmospheric reactions, is produced with the other naturally occurring isotopes of krypton. Being radioactive, it has a half-life of 230,000 years. Krypton is highly volatile when it is near surface waters but 81Kr has been used for dating old (50,000–800,000 years) groundwater.


85Kr is an inert radioactive noble gas with a half-life of 10.76 years. It is produced by the fission of uranium and plutonium, such as in nuclear bomb testing and nuclear reactors. 85Kr is released during the reprocessing of fuel rods from nuclear reactors. Concentrations at the North Pole are 30% higher than at the South Pole due to convective mixing.



Like the other noble gases, krypton is chemically non-reactive. However, following the first successful synthesis of xenon compounds in 1962, synthesis of krypton di-fluoride (KrF2) was reported in 1963. In the same year, KrF4 was reported by Grosse, et al., but was subsequently shown to be a mistaken identification. There are also unverified reports of a barium salt of a krypton oxoacid. ArKr+ and KrH+ polyatomic ions have been investigated and there is evidence for KrXe or KrXe+.


Compounds with krypton bonded to atoms other than fluorine have also been discovered. The reaction of KrF2 with B(OTeF5)3 produces an unstable compound, Kr(OTeF5)2, that contains a krypton-oxygen bond. A krypton-nitrogen bond is found in the cation [HC≡N–Kr–F]+, produced by the reaction of KrF2 with [HC≡NH]+[AsF−6] below −50 °C. HKrCN and HKrC≡CH (krypton hydride-cyanide and hydro-krypto-acetylene) were reported to be stable up to 40 K.


Natural occurrence

The Earth has retained all of the noble gases that were present at its formation except for helium. Krypton’s concentration in the atmosphere is about 1 ppm. It can be extracted from liquid air by fractional distillation. The amount of krypton in space is uncertain, as the amount is derived from the meteoric activity and that from solar winds. The first measurements suggest an over-abundance of krypton in space.



Krypton’s multiple emission lines make ionized krypton gas discharges appear whitish, which in turn makes krypton-based bulbs useful in photography as a brilliant white light source. Krypton is thus used in some types of photographic flashes used in high speed photography. Krypton gas is also combined with other gases to make luminous signs that glow with a bright greenish-yellow light.


Krypton mixes with argon as the fill gas of energy saving fluorescent lamps. This reduces their power consumption. Unfortunately this also reduces their light output and raises their cost. Krypton costs about 100 times as much as argon. Krypton (along with xenon) is also used to fill incandescent lamps to reduce filament evaporation and allow higher operating temperatures to be used for the filament. A brighter light results which contains more blue than conventional lamps.


Krypton’s white discharge is often used to good effect in coloured gas discharge tubes, which are then simply painted or stained in other ways to allow the desired colour (for example, “neon” type advertising signs where the letters appear in differing colours are often entirely krypton-based). Krypton is also capable of much higher light power density than neon in the red spectral line region, and for this reason, red lasers for high-power laser light-shows are often krypton lasers with mirrors which select out the red spectral line for laser amplification and emission, rather than the more familiar helium-neon variety, which could never practically achieve the multi-watt red laser light outputs needed for this application.


Krypton has an important role in production and usage of the krypton fluoride laser. The laser has been important in the nuclear fusion energy research community in confinement experiments. The laser has high beam uniformity, short wavelength, and the ability to modify the spot size to track an imploding pellet.


In experimental particle physics, liquid krypton is used to construct quasi-homogeneous electromagnetic calorimeters. A notable example is the calorimeter of the NA48 experiment at CERN containing about 27 tonnes of liquid krypton. This usage is rare, since the cheaper liquid argon is typically used. The advantage of krypton over argon is a small Molière radius of 4.7 cm, which allows for excellent spatial resolution and low degree of overlapping. The other parameters relevant for calorimetry application are: radiation length of X0=4.7 cm, density of 2.4 g/cm3.


The sealed spark gap assemblies contained in ignition exciters used in some older jet engines contain a very small amount of Krypton-85 to obtain consistent ionization levels and uniform operation.


Krypton-83 has application in magnetic resonance imaging (MRI) for imaging airways. In particular, it may be used to distinguish between hydrophobic and hydrophilic surfaces containing an airway.


Although xenon has potential for use in computed tomography (CT) to assess regional ventilation, its anaesthetic properties limit its fraction in the breathing gas to 35%. The use of a breathing mixture containing 30% xenon and 30% krypton is comparable in effectiveness for CT to a 40% xenon fraction, while avoiding the unwanted effects of a high fraction xenon gas.



Krypton is considered to be a non-toxic asphyxiant. Krypton has a narcotic potency seven times greater than air, so breathing a gas containing 50% krypton and 50% air would cause narcosis similar to breathing air at four times atmospheric pressure. This would be comparable to scuba diving at a depth of 30 m (100 ft) and potentially could affect anyone breathing it. Nevertheless, that mixture would contain only 10% oxygen and hypoxia would be a greater concern.





Posted 2018/03/27 by Stelios in Education

Tagged with , , ,

ARGON 1 of 2   Leave a comment

ARGON 1 of 2

Argon is a chemical element with symbol Ar and atomic number 18. It is in group 18 (noble gases) of the periodic table. Argon is the third most common gas in the Earth’s atmosphere, at 0.93% (9,300 ppm), making it approximately 23.8 times as abundant as next most common atmospheric gas, carbon dioxide (390 ppm), and more than 500 times as abundant as the next most common noble gas, neon (18 ppm). Nearly all of this argon is radiogenic argon-40 derived from the decay of potassium-40 in the Earth’s crust. In the universe, argon-36 is by far the most common argon isotope, being the preferred argon isotope produced by stellar nucleosynthesis in supernovas.


The name “argon” is derived from the Greek word αργον meaning “lazy” or “the inactive one”, a reference to the fact that the element undergoes almost no chemical reactions. The complete octet (eight electrons) in the outer atomic shell makes argon stable and resistant to bonding with other elements. Its triple point temperature of 83.8058 K is a defining fixed point in the International Temperature Scale of 1990.


Argon is produced industrially by the fractional distillation of liquid air. Argon is mostly used as an inert shielding gas in welding and other high-temperature industrial processes where ordinarily non-reactive substances become reactive; for example, an argon atmosphere is used in graphite electric furnaces to prevent the graphite from burning. Argon gas also has uses in incandescent and fluorescent lighting, and other types of gas discharge tubes. Argon makes a distinctive blue-green gas laser.



Argon has approximately the same solubility in water as oxygen, and is 2.5 times more soluble in water than nitrogen. Argon is colourless, odourless, and non-toxic as a solid, liquid, and gas. Argon is chemically inert under most conditions and forms no confirmed stable compounds at room temperature.


Although argon is a noble gas, it has been found to have the capability of forming some compounds. For example, the creation of argon fluorohydride (HArF), a marginally stable compound of argon with fluorine and hydrogen, was reported by researchers at the University of Helsinki in 2000. Although the neutral ground-state chemical compounds of argon are presently limited to HArF, argon can form clathrates with water when atoms of it are trapped in a lattice of the water molecules. Argon-containing ions and excited state complexes, such as ArH+ and ArF, respectively, are known to exist. Theoretical calculations have predicted several argon compounds that should be stable, but for which no synthesis routes are currently known.



Argon (αργος, Greek meaning “inactive”, in reference to its chemical inactivity) was suspected to be present in air by Henry Cavendish in 1785 but was not isolated until 1894 by Lord Rayleigh and Sir William Ramsay in Scotland in an experiment in which they removed all of the oxygen, carbon dioxide, water and nitrogen from a sample of clean air. They had determined that nitrogen produced from chemical compounds was one-half percent lighter than nitrogen from the atmosphere. The difference seemed insignificant, but it was important enough to attract their attention for many months. They concluded that there was another gas in the air mixed in with the nitrogen. Argon was also encountered in 1882 through independent research of H. F. Newall and W.N. Hartley. Each observed new lines in the colour spectrum of air but were unable to identify the element responsible for the lines. Argon became the first member of the noble gases to be discovered. The symbol for argon is now Ar, but up until 1957 it was A.



Argon constitutes 0.934% by volume and 1.28% by mass of the Earth’s atmosphere, and air is the primary raw material used by industry to produce purified argon products. Argon is isolated from air by fractionation, most commonly by cryogenic fractional distillation, a process that also produces purified nitrogen, oxygen, neon, krypton and xenon.



The main isotopes of argon found on Earth are 40Ar (99.6%), 36Ar (0.34%), and 38Ar (0.06%). Naturally occurring 40K with a half-life of 1.25×109 years, decays to stable 40Ar (11.2%) by electron capture or positron emission, and also to stable 40Ca (88.8%) via beta decay. These properties and ratios are used to determine the age of rocks by the method of K-Ar dating.


In the Earth’s atmosphere, 39Ar is made by cosmic ray activity, primarily with 40Ar. In the subsurface environment, it is also produced through neutron capture by 39K or alpha emission by calcium. 37Ar is created from the neutron spallation of 40Ca as a result of subsurface nuclear explosions. It has a half-life of 35 days.


Argon is notable in that its isotopic composition varies greatly between different locations in the solar system. Where the major source of argon is the decay of 40K in rocks, 40Ar will be the dominant isotope, as it is on Earth. Argon produced directly by stellar nucleosynthesis, in contrast, is dominated by the alpha process nuclide, 36Ar. Correspondingly, solar argon contains 84.6% 36Ar based on solar wind measurements.

The predominance of radiogenic 40Ar is responsible for the fact that the standard atomic weight of terrestrial argon is greater than that of the next element, potassium. This was puzzling at the time when argon was discovered, since Mendeleev had placed the elements in his periodic table in order of atomic weight, although the inertness of argon implies that it must be placed before the reactive alkali metal potassium. Henry Moseley later solved this problem by showing that the periodic table is actually arranged in order of atomic number.


The much greater atmospheric abundance of argon relative to the other noble gases is also due to the presence of radiogenic 40Ar. Primordial 36Ar has an abundance of only 31.5 ppmv (= 9340 ppmv x 0.337%), comparable to that of neon (18.18 ppmv).


The Martian atmosphere contains 1.6% of 40Ar and 5 ppm of 36Ar. The Mariner space probe fly-by of the planet Mercury in 1973 found that Mercury has a very thin atmosphere with 70% argon, believed to result from releases of the gas as a decay product from radioactive materials on the planet. In 2005, the Huygens probe also discovered the presence of 40Ar on Titan, the largest moon of Saturn.



Argon’s complete octet of electrons indicates full s and p sub shells This full outer energy level makes argon very stable and extremely resistant to bonding with other elements. Before 1962, argon and the other noble gases were considered to be chemically inert and unable to form compounds; however, compounds of the heavier noble gases have since been synthesized. In August 2000, the first argon compound was formed by researchers at the University of Helsinki. By shining ultraviolet light onto frozen argon containing a small amount of hydrogen fluoride with caesium iodide, argon fluorohydride (HArF) was formed. It is stable up to 40 kelvin (−233 °C). The metastable ArCF2+ 2 dication, which is valence isoelectronic with carbonyl fluoride, was observed in 2010.




Argon is produced industrially by the fractional distillation of liquid air in a cryogenic air separation unit; a process that separates liquid nitrogen, which boils at 77.3 K, from argon, which boils at 87.3 K, and liquid oxygen, which boils at 90.2 K. About 700,000 tonnes of argon are produced worldwide every year.


In radioactive decays

40Ar, the most abundant isotope of argon, is produced by the decay of 40K with a half-life of 1.25×109 years by electron capture or positron emission. Because of this, it is used in potassium-argon dating to determine the age of rocks.


Synopsis from:

Posted 2018/02/22 by Stelios in Education

Tagged with ,

ARGON 2 of 2   Leave a comment


There are several different reasons argon is used in particular applications:

An inert gas is needed. In particular, argon is the cheapest alternative when nitrogen is not sufficiently inert.

Low thermal conductivity is required.

The electronic properties (ionization and/or the emission spectrum) are necessary.

Other noble gases would probably work as well in most of these applications, but argon is by far the cheapest. Argon is inexpensive since it is a by product of the production of liquid oxygen and liquid nitrogen from a cryogenic air separation unit, both of which are used on a large industrial scale. The other noble gases (except helium) are produced this way as well, but argon is the most plentiful by far, since it has a much higher concentration in the atmosphere. The bulk of argon applications arise simply because it is inert and relatively cheap.

Industrial processes

Argon is used in some high-temperature industrial processes, where ordinarily non-reactive substances become reactive. For example, an argon atmosphere is used in graphite electric furnaces to prevent the graphite from burning.

For some of these processes, the presence of nitrogen or oxygen gases might cause defects within the material. Argon is used in various types of arc welding such as gas metal arc welding and gas tungsten arc welding, as well as in the processing of titanium and other reactive elements. An argon atmosphere is also used for growing crystals of silicon and germanium.

Argon is an asphyxiant in the poultry industry, either for mass culling following disease outbreaks, or as a means of slaughter more humane than the electric bath. Argon’s relatively high density causes it to remain close to the ground during gassing. Its non-reactive nature makes it suitable in a food product, and since it replaces oxygen within the dead bird, argon also enhances shelf life.

Argon is sometimes used for extinguishing fires where damage to equipment is to be avoided.

Scientific research

Argon is used, primarily in liquid form, as the target for direct dark matter searches. The interaction of a hypothetical WIMP particle with the argon nucleus produces scintillation light that is then detected by photomultiplier tubes. Two-phase detectors also use argon gas to detect the ionized electrons produced during the WIMP-nucleus scattering. As with most other liquefied noble gases, argon has a high scintillation light yield (~ 51 photons / keV), is transparent to its own scintillation light, and is relatively easy to purify.

Compared to xenon, argon is cheaper and has a distinct scintillation time profile which allows the separation of electronic recoils from nuclear recoils. On the other hand, its intrinsic gamma-ray background is larger due to 39Ar contamination, unless one uses underground argon sources with a low level of radioactivity. Dark matter detectors currently operating with liquid argon include WArP, ArDM, micro Clean and DEAP-I.


Argon is used to displace oxygen- and moisture-containing air in packaging material to extend the shelf-lives of the contents (argon has the European food additive code of E938). Aerial oxidation, hydrolysis, and other chemical reactions which degrade the products are retarded or prevented entirely.

Bottles of high-purity chemicals and certain pharmaceutical products are available in sealed bottles or ampoules packed in argon. In wine making, argon is used to top-off barrels to avoid the aerial oxidation of ethanol to acetic acid during the ageing process.

Argon is also available in aerosol-type cans, which may be used to preserve compounds such as varnish, polyurethane, paint, etc. for storage after opening.

Since 2002, the American National Archives stores important national documents such as the Declaration of Independence and the Constitution within argon-filled cases to retard their degradation. Using argon reduces gas leakage, compared with the helium used in the preceding five decades.

Laboratory equipment

Argon may be used as the inert gas within Schlenk lines and glove boxes The use of argon over comparatively less expensive nitrogen is preferred where nitrogen may react with the experimental reagents or apparatus.

Argon may be used as the carrier gas in gas chromatography and in electro spray ionization mass spectrometry; it is the gas of choice for the plasma used in ICP spectroscopy. Argon is preferred for the sputter coating of specimens for scanning electron microscopy. Argon gas is also commonly used for sputter deposition of thin films as in microelectronics and for wafer cleaning in micro fabrication

Medical use

Cryosurgery procedures such as cryoablation use liquefied argon to destroy cancer cells. In surgery it is used in a procedure called “argon enhanced coagulation” which is a form of argon plasma beam electro surgery The procedure carries a risk of producing gas embolism in the patient and has resulted in the death of one person via this type of accident. Blue argon lasers are used in surgery to weld arteries, destroy tumours, and to correct eye defects. It has also been used experimentally to replace nitrogen in the breathing or decompression mix, to speed the elimination of dissolved nitrogen from the blood.


Incandescent lights are filled with argon, to preserve the filaments at high temperature from oxidation. It is used for the specific way it ionizes and emits light, such as in plasma globes and calorimetry in experimental particle physics. Gas-discharge lamps filled with argon provide blue light. Argon is also used for the creation of blue and green laser light.


Although argon is non-toxic, it is 38% denser than air and is therefore considered a dangerous asphyxiant in closed areas. It is also difficult to detect because it is colourless, odourless, and tasteless. A 1994 incident in which a man was asphyxiated after entering an argon filled section of oil pipe under construction in Alaska highlights the dangers of argon tank leakage in confined spaces, and emphasizes the need for proper use, storage and handling.

Synopsis from:

Posted 2018/02/22 by Stelios in Education

Tagged with ,

NEON   Leave a comment

Neon is a chemical element with symbol Ne and atomic number 10. It is in group 18 (noble gases) of the periodic table. Neon is a colourless, odourless monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypton and xenon) in 1898 as one of the three residual rare inert elements remaining in dry air, after nitrogen, oxygen, argon and carbon dioxide are removed. Neon was the second of these three rare gases to be discovered, and was immediately recognized as a new element from its bright red emission spectrum. Neon’s name is derived from Greek words meaning “new one.” Neon is chemically inert and forms no uncharged chemical compounds.

During cosmic nucleogenesis of the elements, large amounts of neon are built up from the alpha-capture fusion process in stars. Although neon is a very common element in the universe and solar system (it is fifth in cosmic abundance after hydrogen, helium, oxygen and carbon), it is very rare on Earth. It composes about 18.2 ppm of air by volume (this is about the same as the molecular or mole fraction), and a smaller fraction in the crust. The reason for neon’s relative scarcity on Earth and the inner (terrestrial) planets, is that neon forms no compounds to fix it to solids, and is highly volatile, therefore escaping from the planetesimals under the warmth of the newly-ignited Sun in the early Solar System. Even the atmosphere of Jupiter is somewhat depleted of neon, presumably for this reason.

Neon gives a distinct reddish- orange glow when used in either low-voltage neon glow lamps or in high-voltage discharge tubes or neon advertising signs. The red emission line from neon is also responsible for the well known red light of helium-neon lasers. Neon is used in a few plasma tube and refrigerant applications but has few other commercial uses. It is commercially extracted by the fractional distillation of liquid air. It is considerably more expensive than helium, since air is its only source.


Neon (Greek ???? (neon) meaning “new one”) was discovered in 1898 by the British chemists Sir William Ramsay (1852–1916) and Morris W. Travers (1872–1961) in London. Neon was discovered when Ramsay chilled a sample of air until it became a liquid, then warmed the liquid and captured the gases as they boiled off. The gases nitrogen, oxygen, and argon had been identified, but the remaining gasses were isolated in roughly their order of abundance, in a six-week period beginning at the end of May 1898. First to be identified was krypton. The next, after krypton had been removed, was a gas which gave a brilliant red light under spectroscopic discharge. This gas, identified in June, was named neon, the Greek analogue of “novum,” (new), the name Ramsay’s son suggested. The characteristic brilliant red-orange colour that is emitted by gaseous neon when excited electrically was noted immediately; Travers later wrote, “the blaze of crimson light from the tube told its own story and was a sight to dwell upon and never forget.” Finally, the same team discovered xenon by the same process, in July.

Neon’s scarcity precluded its prompt application for lighting along the lines of Moore tubes, which used nitrogen and which were commercialized in the early 1900s. After 1902, Georges Claude’s company, Air Liquide, was producing industrial quantities of neon as a by product of his air liquefaction business. In December 1910 Claude demonstrated modern neon lighting based on a sealed tube of neon. Claude tried briefly to get neon tubes to be used for indoor lighting, due to their intensity, but failed, as home owners rejected neon light sources due to their colour. Finally in 1912, Claude’s associate began selling neon discharge tubes as advertising signs, where they were instantly more successful as eye catchers. They were introduced to the U.S. in 1923, when two large neon signs were bought by a Los Angeles Packard car dealership. The glow and arresting red colour made neon advertising completely different from the competition.

Neon played a role in the basic understanding of the nature of atoms in 1913, when J. J. Thomson, as part of his exploration into the composition of canal rays, channelled streams of neon ions through a magnetic and an electric field and measured their deflection by placing a photographic plate in their path.

Thomson observed two separate patches of light on the photographic plate, which suggested two different parabolas of deflection. Thomson eventually concluded that some of the atoms in the neon gas were of higher mass than the rest. Though not understood at the time by Thomson, this was the first discovery of isotopes of stable atoms. It was made by using a crude version of an instrument we now term as a mass spectrometer.


The first evidence for isotopes of a stable element. In the bottom right corner of J. J. Thomson’s photographic plate are the separate impact marks for the two isotopes neon-20 and neon-22.

Neon is the second lightest inert gas. Neon has three stable isotopes: 20Ne (90.48%), 21Ne (0.27%) and 22Ne (9.25%). 21Ne and 22Ne are partly primordial and partly nucleogenic (i.e., made by nuclear reactions of other nuclides with neutrons or other particles in the environment) and their variations in natural abundance are well understood. In contrast, 20Ne (the chief primordial isotope made in stellar nucleosynthesis) is not known to be nucleogenic or radiogenic (save for cluster decay production, which is thought to produce only a small amount). The causes of the variation of 20Ne in the Earth have thus been hotly debated.

The principal nuclear reactions which generate nucleogenic neon isotopes start from 24Mg and 25Mg, which produce 21Ne and 22Ne, respectively, after neutron capture and immediate emission of an alpha particle. The neutrons that produce the reactions are mostly produced by secondary spallation reactions from alpha particles, in turn derived from uranium-series decay chains. The net result yields a trend towards lower 20Ne/22Ne and higher 21Ne/22Ne ratios observed in uranium-rich rocks such as granites. Neon-21 may also be produced in a nucleogenic reaction, when 20Ne absorbs a neutron from various natural terrestrial neutron sources.

In addition, isotopic analysis of exposed terrestrial rocks has demonstrated the cosmogenic (cosmic ray) production of 21Ne. This isotope is generated by spallation reactions on magnesium, sodium, silicon, and aluminium. By analysing all three isotopes, the cosmogenic component can be resolved from magmatic neon and nucleogenic neon. This suggests that neon will be a useful tool in determining cosmic exposure ages of surface rocks and meteorites.

Similar to xenon, neon content observed in samples of volcanic gases is enriched in 20Ne, as well as nucleogenic 21Ne, relative to 22Ne content. The neon isotopic content of these mantle-derived samples represents a non-atmospheric source of neon. The 20Ne-enriched components are attributed to exotic primordial rare gas components in the Earth, possibly representing solar neon. Elevated 20Ne abundances are found in diamonds, further suggesting a solar neon reservoir in the Earth.


Neon is the second-lightest noble gas, after helium. It glows reddish-orange in a vacuum discharge tube. Also, neon has the narrowest liquid range of any element: from 24.55 K to 27.05 K (-248.45 °C to -245.95 °C, or -415.21 °F to -410.71 °F). It has over 40 times the refrigerating capacity of liquid helium and three times that of liquid hydrogen (on a per unit volume basis). In most applications it is a less expensive refrigerant than helium.

Neon plasma has the most intense light discharge at normal voltages and currents of all the noble gases. The average colour of this light to the human eye is red-orange due to many lines in this range; it also contains a strong green line which is hidden, unless the visual components are dispersed by a spectroscope.

Two quite different kinds of neon lighting are in common use. Neon glow lamps are generally tiny, with most operating at about 100–250 volts. They have been widely used as power-on indicators and in circuit-testing equipment, but light-emitting diodes (LEDs) now dominate in such applications. These simple neon devices were the forerunners of plasma displays and plasma television screens. Neon signs typically operate at much higher voltages (2–15 kilovolts), and the luminous tubes are commonly meters long. The glass tubing is often formed into shapes and letters for signage as well as architectural and artistic applications.


Stable isotopes of neon are produced in stars. 20Ne is created in fusing helium and oxygen in the alpha process, which requires temperatures above 100 mega kelvins and masses greater than 3 solar masses.

Neon is abundant on a universal scale; it is the fifth most abundant chemical element in the universe by mass, after hydrogen, helium, oxygen, and carbon. Its relative rarity on Earth, like that of helium, is due to its relative lightness, high vapour pressure at very low temperatures, and chemical inertness, all properties which tend to keep it from being trapped in the condensing gas and dust clouds which resulted in the formation of smaller and warmer solid planets like Earth.

Neon is monatomic, making it lighter than the molecules of diatomic nitrogen and oxygen which form the bulk of Earth’s atmosphere; a balloon filled with neon will rise in air, albeit more slowly than a helium balloon.

Mass abundance in the universe is about 1 part in 750 and in the Sun and presumably in the proto-solar system nebula, about 1 part in 600. The Galileo spacecraft atmospheric entry probe found that even in the upper atmosphere of Jupiter, the abundance of neon is reduced (depleted) by about a factor of 10, to a level of 1 part in 6,000 by mass. This may indicate that even the ice- planetesimals which brought neon into Jupiter from the outer solar system, formed in a region which was too warm for them to have kept their neon (abundances of heavier inert gases on Jupiter are several times that found in the Sun).

Neon is rare on Earth, found in the Earth’s atmosphere at 1 part in 55,000, or 18.2 ppm by volume (this is about the same as the molecule or mole fraction), or 1 part in 79,000 of air by mass. It comprises a smaller fraction in the crust. It is industrially produced by cryogenic fractional distillation of liquefied air.


Neon is often used in signs and produces an unmistakable bright reddish-orange light. Although still referred to as “neon”, all other colours are generated with the other noble gases or by many colours of fluorescent lighting.

Neon is used in vacuum tubes, high-voltage indicators, lightning arrestors, wave meter tubes, television tubes, and helium-neon lasers. Liquefied neon is commercially used as a cryogenic refrigerant in applications not requiring the lower temperature range attainable with more extreme liquid helium refrigeration.

Both neon gas and liquid neon are relatively expensive – for small quantities, the price of liquid neon can be more than 55 times that of liquid helium. The driver for neon’s expense is the rarity of neon, which unlike helium, can only be obtained from air.

The triple point temperature of neon (24.5561 K) is a defining fixed point in the International Temperature Scale of 1990.


Neon is the first p-block noble gas. Neon is generally considered to be inert. No true neutral compounds of neon are known. However, the ions Ne+, (NeAr)+, (NeH)+, and (HeNe+) have been observed from optical and mass spectrometric studies, and there are some unverified reports of an unstable hydrate.

Synopsis from:


Posted 2018/02/18 by Stelios in Education

Tagged with , , ,

NOBLE GAS   Leave a comment

The noble gases are the elements in group 18 (also sometimes Group 0 IUPAC Style, or Group 8) of the periodic table. The group is also called the helium family or neon family. Chemically, the noble gases are very stable due to having the maximum number of valence electrons their outer shell can hold. Noble gases rarely react with other elements since they are already stable. Under normal conditions, they occur as odourless, colourless, monatomic gases. Each of them has its melting and boiling point close together, so that only a small temperature range exists for each noble gas in which it is a liquid. Noble gases have numerous important applications in lighting, welding and space technology.

The seven noble gases are: helium, neon, argon, krypton, xenon, radon, and ununoctium.


“Noble gas” is the translation of the German Edelgas, which was in use as early as 1898. This refers to the extremely low level of reactivity under normal conditions. The noble gases have also been referred to as inert gases, but these terms are not strictly accurate because several of them do take part in chemical reactions. Another old term is rare gases, although argon forms a fairly considerable part (0.93% by volume, 1.29% by mass) of the Earth’s atmosphere.


The existence of noble gases was not known until after the advent of the periodic table. In the late nineteenth century, Lord Rayleigh discovered that some samples of nitrogen from the air were of a different density than nitrogen resulting from chemical reactions. Along with scientist William Ramsay, Lord Rayleigh theorized that the nitrogen extracted from air was associated with another gas, argon. With this discovery, they realized that a whole class of gases was missing from the periodic table. Eventually, all the known noble gases except for helium were discovered in the air, with argon being much more common than the others, and the table was completed. Helium was detected spectrographically in the Sun in 1868. The isolation of helium on Earth had to wait until 1895. Under standard conditions, the noble gases all occur as monatomic gases.

Chemical make-up

Noble gases have full valence electron shells. Valence electrons are the outermost electrons of an atom and are normally the only electrons which can participate in chemical bonding. According to atomic theory derived from quantum mechanics and experimental trends, atoms with full valence electron shells are extraordinarily stable and therefore do not form chemical bonds.

All of them exhibit an extremely low chemical reactivity and very few noble gas compounds have been prepared. No conventional compounds of helium or neon have yet been prepared, while xenon and krypton are known to show some reactivity in the laboratory. Recently argon compounds have also been successfully characterised. The noble gases’ lack of reactivity can be explained in terms of them having a “complete valence shell”. They have little tendency to gain or lose electrons. The noble gases have high ionization energies and negligible electro negativities The noble gases have very weak inter-atomic forces of attraction, and consequently very low melting points and boiling points. This is why they are all monatomic gases under normal conditions, even those with larger atomic masses than many normally solid elements.


One of the most commonly encountered uses of the noble gases in everyday life is in lighting. Argon is often used as a suitable safe and inert atmosphere for the inside of filament light bulbs, and is also used as an inert atmosphere in the synthesis of air and moisture sensitive compounds (as an alternative for nitrogen). Some of the noble gases glow distinctive colours when used inside lighting tubes ( neon lights). Helium, due to its non reactivity (compared with flammable hydrogen) and lightness, is often used in blimps and balloons. Helium and argon are commonly used to shield a welding arc, and the surrounding base metal from the atmosphere during welding. Krypton is also used in lasers, which are used by doctors for eye surgery. Xenon is used in xenon arc lamps, and it has anaesthetic properties.

Noble gas notation

The noble gases can be used in conjunction with the electron configuration notation to make what is called the Noble Gas Notation. For example: while the electron notation of the element carbon is 1s²2s² 2p², the Noble Gas notation would be [He] 2s²2p².

This notation makes the identification of elements faster, and is shorter and easier than writing out the full notation of orbitals.

Synopsis from:

Posted 2018/02/01 by Stelios in Education

Tagged with , , , , , , , ,