Archive for the ‘SCALE INSECT’ Tag

PEST CONTROL   Leave a comment

1869: Birth of ecology. Most people are unaware that the subdivision of biology called ecology is over a century old. Over the course of its development, ecology has emerged as one of the most significant and studied aspects of biology. Ecology refers to the overall interrelated system of nature and the interdependence of all living things.

The word ecology has been popularized more recently because of the many environmental concerns that have been raised since the 1970s. But as a word, ecology was coined in about 1869 by a German zoologist named Ernst Haeckel. A researcher in evolution and a strong supporter of Charles Darwin’s theories, Haeckel spent most of his career teaching at the University of Jena.

The study of ecology dates back to the ancient Greek philosophers. An associate of Aristotle named Theophrastus first described the relationships between organisms and their environment. Today the field of ecology has expanded beyond narrow biological studies to include environmental pollution, population growth, and food supplies.

Organisms considered harmful to humans or their interests are called pests. They include plants or animals that carry disease, cause disease, or destroy crops or structures. The definition of a pest is subjective. An ecologist would not necessarily consider a leaf-eating caterpillar on a corn plant a pest, but a farmer might. The term pest may refer to insects, viruses, and bacteria that carry or cause disease. It may also refer to organisms that destroy crops or man-made structures. Plants, such as weeds or fungi, and vertebrates, such as rats, mice, and birds, are sometimes called pests when they destroy crops or stored foods.

The elimination of pests or the inhibition of their reproduction, development, or migration is known as pest control. The control of pests has a great influence on the world economy. Even with current pest-control measures, agricultural pests are responsible for the annual destruction of millions of acres of crops worldwide. In South east Asia, rodents have been known to destroy as much as 50 percent of a rice crop before it is harvested. In the United States, over 500 million dollars are lost annually to insect and rodent infestation of stored foods and grains.

Some insects are considered pests because they are wood-eaters. They are a threat to wooden structures houses and other buildings, trees, and fences. Several species of ants, bees, and beetles can also damage wooden structures.

In the field of agriculture, pest control is used to protect farm crops and forests that are harvested for their wood. Pest control has also contributed to the management of many health-threatening diseases, including plague, encephalitis, yellow fever, malaria, and typhus.

Chemical Control

The most common method of pest control is the use of pesticides chemicals that either kill pests or inhibit their development. Pesticides are often classified according to the pest they are intended to control. For example, insecticides are used to control insects; herbicides to control plants; fungicides, fungi; rodenticides, rodents; avicides, birds; and bactericides to control bacteria. Pesticides also include chemosterilants and growth regulators, which are used to interfere with the normal reproduction or development of the pest.

Pyrethrum, old genus of composite family which botanists now place in genus Chrysanthemum; most garden varieties were derived from Chrysanthemum roseum, or Pyrethrum roseum, a handsome perennial with finely dissected leaves and white to crimson and lilac flowers; the flowers of Chrysanthemum cinerariaefolium, used in insecticides, had important part in U.S. troops’ fight against malaria-carrying mosquitoes in World War II.

Chemical control of pests probably began with poisonous plant compounds. In the 18th and 19th centuries, farmers ground up certain plants that were toxic to insects or rodents plants such as chrysanthemums or tobacco. The plant “soup” was then applied directly to either the crops or the pests. Chemists later discovered that they could extract the toxic compounds from these poisonous plants and apply the compounds as liquid sprays. Such chemicals as nicotine, petroleum, coal tar, creosote, turpentine, and pyrethrum (obtained from a type of chrysanthemum) were eventually extracted for use as sprays. Organic compounds such as these were eventually replaced by more effective inorganic chemicals, including arsenic, lime, sulphur, strychnine, and cyanide.

With the advent of synthetic organic compounds during World War II, a dramatic change occurred in pest control. The discovery of the insecticidal properties of the synthetic compounds DDT (dichlorodiphenyltrichloroethane) which was widely used against disease-spreading insects during the war and BHC (benzene hexachloride) made the notion of pest-free crops realistic. The development of another synthetic organic compound, the selective herbicide 2,4-D (2,4-dichlorophenoxyacetic acid), led to the development of other selective herbicides.

With the discovery of DDT, 2,4-D, and BHC, researchers began to develop other synthetic organic pesticides, especially growth regulators, chemosterilants, pyrethroids (compounds with insecticidal properties similar to those of pyrethrum), and organophosphate chemicals. This research expanded in order to develop other, non chemical, methods of pest control after the harmful persistence of pesticides in the environment was recognized. It was discovered in the 1950s that DDT and its related compounds are not easily broken down in the environment. DDT’s high stability leads to its accumulation in insects that constitute the diet of other animals. These high levels of DDT have toxic effects on animals, especially certain birds and fishes. Scientists also found that many species of insects rapidly develop populations that are resistant to the pesticide.

By the 1960s, the value of DDT as an insecticide had decreased, and in the 1970s severe restrictions were imposed on its use. In the United States, the Federal Environmental Pesticide Control Act of 1972 and the Federal Insecticide, Fungicide, and Rodenticide Act passed in 1972 required pesticide manufacturers to conduct scientific tests on the biological activity, defectiveness, persistence, and toxicity of any new pesticide before the chemical could be marketed. In the late 1980s, the average cost to develop and register a pesticide product was 10 million dollars. In the 1960s and 1970s, public objections were raised over the indiscriminate use of pesticides. The Environmental Protection Agency (EPA) was created in 1970 to ascertain past damage and possible future damage that could occur to the environment as the result of widespread pesticide use, and to set up programs to combat environmental problems.

An alternative concept of integrated pest management was adopted for many agricultural pests. This approach involves non-chemical pest-control methods, including crop exclusion, crop rotation, sanitation, and biological control. These methods augment other pest control programs designed to minimize pesticide usage.

Biological Control

The biological control of pests involves exposing them to predators or parasites. The use of predators and parasites is usually accompanied by a program in which pest-damaged fields are scouted and pest population estimates are made. Predators and parasites are then released by the millions to assure control of the target pest.

China (or People’s Republic of China), country in e. Asia; area 3,692,000 sq mi (9,561,000 sq km); cap. Beijing; pop. 1,165,888,000. Circa 1995.

Biological pest control was used by the ancient Chinese, who used predacious ants to control plant-eating insects. In 1776, predators were recommended for the control of bedbugs. The modern era of biological pest control began in 1888, when the vedalia beetle was imported from Australia to California to control the cottony-cushion scale insect. This biological control project saved the citrus-fruit industry.

Insect predators also have been used to control the bean beetle, tomato horn worms, and aphids. Another biological method is the use of bacteria against grubs, or insect larvae. For example, the bacterium Bacillus thuringiensis is used to control the caterpillar larvae of the gypsy moth, as well as the larvae of mosquitoes In the 1980s, mosquito-eating fish and nematodes that prey on such soil insects as corn root worms were introduced as biological-control agents.

Since the 18th century, the breeding of host plants for pest resistance also has been used to control pests. Wheat has been the object of the most extensive plant-resistance research. Effective wheat-breeding programs have led to the development of new wheat varieties that are resistant to rusts various parasitic fungi that infect the leaves and stems of the plant. Corn breeding has resulted in varieties resistant to other fungal diseases, including smut and leaf blight. The classic example of this plant-resistance approach to pest control was the control of phylloxera, insects that attacked the root stock of the European wine grape and almost completely ruined the European wine industry. The problem was solved by grafting the European plants onto the resistant American wine grape root stock.

The development of insect predators to control structural pests has met with little success. Nematodes have been used against termites in laboratories, but field tests have not been successful. Parasitic wasps used against various cockroach species have also been unsuccessful in the field.

Other Controls

Cultural control methods are used to alter the pest’s environment and thereby reduce access to breeding areas, food, and shelter. Cultural methods have been used to control the yellow-fever mosquito, which breeds in swamps and small pools of water. With the draining of swamps and the elimination of stagnant pools and other containers where water accumulates, the number of potential breeding places for the pest is reduced. Cultural control has also been used against structural pests, which depend on protected places such as cracks in side walks, roads, or buildings; garbage; and weeds for survival. Structural pests are often effectively deterred when openings to potential hiding places are sealed and debris and refuse are eliminated.

Crops are sometimes protected from harmful pests through diverse planting techniques. Crop rotation, for example, prevents the development of fungus and bacterium populations. Open-area planting relies on the wind to hinder flies and other insects that damage vegetable crops.

Physical or mechanical control methods are effective against some pests. Such controls include sticky barriers, heat killing (for storage pests), and flooding (for ground pests). Pressure-treated wood is protected against many wood-damaging fungi and insects. Traps are another mechanical method of pest control. Some traps are designed to either kill or capture rodents and other vertebrate pests. Netting and metal shields are used to keep birds from damaging fruit crops or from roosting on buildings. Electrical light traps attract insects and electrocute them. In some buildings, fans are installed above doors to prevent the entry of flying insects.

An area of pest-control research that has received much attention in recent years involves baiting traps with the pest’s own sex attractants, or pheromones. Pheromone traps have been used extensively against the fruit fly and gypsy moth. Pheromones are also being used to attract and trap pests that infest stored foods and grains.

Many countries use importation and quarantine regulations to control the importation of foreign plant or insect pests. Fruit is especially prone to insect infestation and disease. In the United States, the Animal and Plant Health Inspection Service monitors incoming products and materials and requires certain products to be treated prior to entry. Similar controls exist in other countries. Some regions have quarantine regulations to ensure that certain insect pests are not brought into the area. In the United States, individual states have their own inspection services. Some states even have border inspection stations to prevent unauthorized transport of plants across state lines.

Assisted by George W. Rambo.

ECOLOGY (Part 3 of 3)   Leave a comment

HOW DDT KILLED THE ROBINS. Dutch elm disease threatened to destroy most of the majestic elms that once flourished along residential streets. To eliminate the beetles that carry this fungus disease, many communities sprayed their elms with massive doses of DDT. The pesticide stuck to the leaves even after they fell in the autumn. Earthworms then fed on the leaves and accumulated DDT in their bodies. When spring came, robins returned to the communities to nest. They ate the earthworms and began to die in alarming numbers. Of the females that survived, some took in enough DDT to hamper the production or hatching of eggs. Robin populations were so seriously affected by DDT poisoning that the very survival of the songbird seemed in jeopardy. This experience was a vivid example of the far-ranging effects that flow from upsets in the delicate balances of nature.

Ironically, the DDT did little to prevent the spread of Dutch elm disease.

By the 1970s ecologists had accumulated considerable evidence demonstrating that the widely used pesticide DDT and its metabolites, principally DDE, altered the calcium metabolism of certain birds. The birds laid eggs with such thin shells that they were crushed during incubation. This discovery was one of many that led to the imposition of legal restraints on the use of some agricultural pesticides.

Ecologists know that the well-being of a biotic community may require the preservation of a key member-species. For example, the alligator performs a valuable service in the Florida Everglades by digging “‘gator holes.” These are ponds created by female alligators when they dig up grass and mud for their nests. During extremely dry spells, these holes often retain enough water to meet the needs of bobcats, raccoons and fish until the arrival of rainy weather.

Many birds use the holes for watering. Willow seeds take root along the edges, and fallen willow leaves later add substance to the soil. Thus, many forms of life are sustained by ‘gator holes. But poachers have been hunting the alligators almost to extinction for their valuable hides.

As a result, the number of ‘gator holes can be expected to dwindle, and various forms of Everglades wildlife may be deprived of these refuges. Such ecological findings strengthen the case for the protection of alligators.

Another ecological threat to the Everglades arose in the late 1960s, when plans were made to build a jet airport near the northern end of the national park. The airport would have wiped out part of a large swamp that furnishes the Everglades with much of its surface water. Ecologists and conservationists opposed the project, arguing that it would hamper the flow of surface water through the park and thus endanger the biota of the unique Everglades ecosystem.

Their arguments aroused public concern, and in 1970 plans for the airport were dropped.

An Ecological Mistake

Kaibab National Forest, forest in Arizona, adjoining Grand Canyon National Park; 1,780,475 acres (691,395 hectares); forest headquarters Williams, Ariz.

At times, seemingly practical conservation efforts turn out to be mistakes. Cougars, or mountain lions, and deer were once abundant in Grand Canyon National Park and Kaibab National Forest. Because the cougars preyed on the deer, hunters were allowed to shoot the cougars until only a few were left.

With their chief enemy gone, the deer of the area increased so rapidly that they consumed more forage than the Kaibab could produce. The deer stripped the forest of every leaf and twig they could reach and destroyed large areas of forage in the Grand Canyon National Park as well. The famished deer grew feeble, and many defective fawns were born. Finally, deer hunting in the Kaibab was permitted, in the hope that the size of the deer herd would drop until the range could accommodate it. In addition, the few surviving cougars were protected to allow them to multiply. They then resumed their ecological niche of keeping the herd size down and of killing those deer not vigorous enough to be good breeding stock.

The Ecological Control of Pests

Many of the insects and other pests that have plagued North America originated elsewhere. There these pests were held in check by natural enemies, and the plants and animals they infested had developed a measure of tolerance toward them. However, when they were placed in an environment free of these restraints, the pests often multiplied uncontrollably.

At first, farmers fought the pests with toxic sprays and other powerful chemicals. However, these methods were expensive, sometimes proved unsuccessful, and were often dangerous. After decades of use, some pesticides were banned. In certain instances, pesticide use gave way to an ecological approach.

Research showed that severe damage from certain pests the Mexican beetle and the European corn borer, for example is confined to crops grown on particular types of soil or under certain conditions of moisture. Changes in land use helped control some pests. Others were controlled biologically by importing parasites or predators from their native lands. This important form of pest control proved successful in limiting damage by scale insects.

By destroying birds and other animals, as well as their breeding places, people lose valuable allies in their constant war with insects. Once, when the sportsmen of Ohio supported a proposal to permit quail hunting, the farmers of the state objected. They knew that a single quail killed enough insects to make it worth at least as much to them as a dozen chickens.

In some 3,000 locally organized Resource Conservation Districts ecological principles are being used to guide land use and community maintenance practices. These districts encompass the federal lands of the United States and more than 95 percent of its privately owned farmlands.

GOALS OF ECOLOGY

Throughout the world man-made communities have been replacing the communities of nature. However, the principles that govern the life of natural communities must be observed if these man-made communities are to thrive. People must think less about conquering nature and more about learning to work with nature.

In addition, each person must realize his interdependence with the rest of nature, including his fellow human beings. To safeguard life on Earth, people must learn to control and adjust the balances in nature that are altered by their activities.

Maintenance of the Environment

Climate cannot be changed except sporadically by cloud seeding, inadvertently by pollution, and on a small scale by making windbreaks or greenhouses. However, human activities can be successfully adapted to the prevailing climatic patterns. Plants and animals, for example, should be raised in the climates best suited to them, and particular attention should be paid to the cold and dry years rather than to average years or exceptionally productive years. In the United States the serious dust storms of the 1930s occurred because land that was ploughed in wet years to grow wheat blew away in dry years. Much of that land should have been kept as range land

Soil is a measure of an environment’s capacity to support life. It forms very slowly but can be lost quickly as much as an inch in a rainstorm. Wise land use ensures its retention and improvement.

For agricultural purposes, land is used principally as timber land, range land, or crop land Timber land and range land are natural communities. Crop land is formed when what was originally timber land or range land is cultivated. To ensure the best possible use of land, it is classified according to its ability to sustain the production of timber, pasture, or crops.

Water, like soil, is a measure of the abundance of life. Usable water depends on the amount and retention of rainfall. An excessive run-off of rainwater, however, may result from human activities for example, the building of roads and drainage ditches; the construction of extensive parking areas and shopping centres; the unwise harvesting of timber; year-round grazing of ranges; and the cultivation of easily eroded lands. Excessive run-off may cause floods. It may also lead to drought, which can occur when too little water is stored underground. Moreover, run-off strips soil from the land. This is deposited in reservoirs, ship channels, and other bodies of water. These silt-laden bodies must then be either dredged or abandoned. Water movements in and out of the soil must be controlled in such a way as to minimize damage and maximize benefits.

The Conservation of Natural Communities

Community, in biology, a group of organisms living together in a particular environment.

The communities of plants and animals established by humans usually consist of only a few varieties, often managed in a way that harms the environment. By contrast, natural communities usually enhance the environment and still yield many products and sources of pleasure to people.

Land once cultivated but now lying idle should be restored to the natural communities that formerly occupied it. In addition, people should use the findings of ecology to improve their artificial communities such as fields, gardens, orchards, and pastures. For example, few man-made agents for the control of pests can outperform the wide variety of insect-eating birds.

The Curtailment of Waste

Modern machines and weapons and the harmful wastes of technology can be used to destroy the environment. At the same time, the wise use of machinery can also enable humans to conserve their surroundings. Just as negotiation rather than warfare can be employed to resolve international disputes, no doubt the means can be devised to curtail the destructive wastes of factories and vehicles. True, ever-growing demands for goods and services, nurtured by increasing human populations and rising expectations, are placing more and more pressure on the environment. An understanding of the causes and consequences of environmental deterioration, however, may bring about a change in the goals that people pursue and the means they use to achieve these goals.

Increases in human material possessions have been accompanied by a potentially dangerous worsening of the natural environment. A central function of ecology is to study human interactions with the natural environment in order to modify them favourably.

Assisted by E.J. Dyksterhuis, Professor of Range Ecology, Texas A & M University.

BIBLIOGRAPHY FOR ECOLOGY

Books for Children

Jaspersohn, William. How the Forest Grew (Greenwillow, 1980).

Pringle, Laurence. City and Suburb: Exploring an Ecosystem (Macmillan, 1975).

Sabin, Francene. Ecosystems and Food Chains (Troll, 1985).

Selsam, M.E. How Animals Live Together, rev. ed. (Morrow, 1979).

Books for Young Adults

Billington, E.T. Understanding Ecology, rev. ed. (Warne, 1971).

Pringle, Laurence. Lives at Stake: The Science and Politics of Environmental Health (Macmillan, 1980).

Sharpe, G.W. Interpreting the Environment, 2nd ed. (Wiley, 1982).

Sharpe, G.W. and others. Introduction to Forestry, 4th ed. (McGraw, 1976).