ARGON 1 of 2   Leave a comment

ARGON 1 of 2

Argon is a chemical element with symbol Ar and atomic number 18. It is in group 18 (noble gases) of the periodic table. Argon is the third most common gas in the Earth’s atmosphere, at 0.93% (9,300 ppm), making it approximately 23.8 times as abundant as next most common atmospheric gas, carbon dioxide (390 ppm), and more than 500 times as abundant as the next most common noble gas, neon (18 ppm). Nearly all of this argon is radiogenic argon-40 derived from the decay of potassium-40 in the Earth’s crust. In the universe, argon-36 is by far the most common argon isotope, being the preferred argon isotope produced by stellar nucleosynthesis in supernovas.


The name “argon” is derived from the Greek word αργον meaning “lazy” or “the inactive one”, a reference to the fact that the element undergoes almost no chemical reactions. The complete octet (eight electrons) in the outer atomic shell makes argon stable and resistant to bonding with other elements. Its triple point temperature of 83.8058 K is a defining fixed point in the International Temperature Scale of 1990.


Argon is produced industrially by the fractional distillation of liquid air. Argon is mostly used as an inert shielding gas in welding and other high-temperature industrial processes where ordinarily non-reactive substances become reactive; for example, an argon atmosphere is used in graphite electric furnaces to prevent the graphite from burning. Argon gas also has uses in incandescent and fluorescent lighting, and other types of gas discharge tubes. Argon makes a distinctive blue-green gas laser.



Argon has approximately the same solubility in water as oxygen, and is 2.5 times more soluble in water than nitrogen. Argon is colourless, odourless, and non-toxic as a solid, liquid, and gas. Argon is chemically inert under most conditions and forms no confirmed stable compounds at room temperature.


Although argon is a noble gas, it has been found to have the capability of forming some compounds. For example, the creation of argon fluorohydride (HArF), a marginally stable compound of argon with fluorine and hydrogen, was reported by researchers at the University of Helsinki in 2000. Although the neutral ground-state chemical compounds of argon are presently limited to HArF, argon can form clathrates with water when atoms of it are trapped in a lattice of the water molecules. Argon-containing ions and excited state complexes, such as ArH+ and ArF, respectively, are known to exist. Theoretical calculations have predicted several argon compounds that should be stable, but for which no synthesis routes are currently known.



Argon (αργος, Greek meaning “inactive”, in reference to its chemical inactivity) was suspected to be present in air by Henry Cavendish in 1785 but was not isolated until 1894 by Lord Rayleigh and Sir William Ramsay in Scotland in an experiment in which they removed all of the oxygen, carbon dioxide, water and nitrogen from a sample of clean air. They had determined that nitrogen produced from chemical compounds was one-half percent lighter than nitrogen from the atmosphere. The difference seemed insignificant, but it was important enough to attract their attention for many months. They concluded that there was another gas in the air mixed in with the nitrogen. Argon was also encountered in 1882 through independent research of H. F. Newall and W.N. Hartley. Each observed new lines in the colour spectrum of air but were unable to identify the element responsible for the lines. Argon became the first member of the noble gases to be discovered. The symbol for argon is now Ar, but up until 1957 it was A.



Argon constitutes 0.934% by volume and 1.28% by mass of the Earth’s atmosphere, and air is the primary raw material used by industry to produce purified argon products. Argon is isolated from air by fractionation, most commonly by cryogenic fractional distillation, a process that also produces purified nitrogen, oxygen, neon, krypton and xenon.



The main isotopes of argon found on Earth are 40Ar (99.6%), 36Ar (0.34%), and 38Ar (0.06%). Naturally occurring 40K with a half-life of 1.25×109 years, decays to stable 40Ar (11.2%) by electron capture or positron emission, and also to stable 40Ca (88.8%) via beta decay. These properties and ratios are used to determine the age of rocks by the method of K-Ar dating.


In the Earth’s atmosphere, 39Ar is made by cosmic ray activity, primarily with 40Ar. In the subsurface environment, it is also produced through neutron capture by 39K or alpha emission by calcium. 37Ar is created from the neutron spallation of 40Ca as a result of subsurface nuclear explosions. It has a half-life of 35 days.


Argon is notable in that its isotopic composition varies greatly between different locations in the solar system. Where the major source of argon is the decay of 40K in rocks, 40Ar will be the dominant isotope, as it is on Earth. Argon produced directly by stellar nucleosynthesis, in contrast, is dominated by the alpha process nuclide, 36Ar. Correspondingly, solar argon contains 84.6% 36Ar based on solar wind measurements.

The predominance of radiogenic 40Ar is responsible for the fact that the standard atomic weight of terrestrial argon is greater than that of the next element, potassium. This was puzzling at the time when argon was discovered, since Mendeleev had placed the elements in his periodic table in order of atomic weight, although the inertness of argon implies that it must be placed before the reactive alkali metal potassium. Henry Moseley later solved this problem by showing that the periodic table is actually arranged in order of atomic number.


The much greater atmospheric abundance of argon relative to the other noble gases is also due to the presence of radiogenic 40Ar. Primordial 36Ar has an abundance of only 31.5 ppmv (= 9340 ppmv x 0.337%), comparable to that of neon (18.18 ppmv).


The Martian atmosphere contains 1.6% of 40Ar and 5 ppm of 36Ar. The Mariner space probe fly-by of the planet Mercury in 1973 found that Mercury has a very thin atmosphere with 70% argon, believed to result from releases of the gas as a decay product from radioactive materials on the planet. In 2005, the Huygens probe also discovered the presence of 40Ar on Titan, the largest moon of Saturn.



Argon’s complete octet of electrons indicates full s and p sub shells This full outer energy level makes argon very stable and extremely resistant to bonding with other elements. Before 1962, argon and the other noble gases were considered to be chemically inert and unable to form compounds; however, compounds of the heavier noble gases have since been synthesized. In August 2000, the first argon compound was formed by researchers at the University of Helsinki. By shining ultraviolet light onto frozen argon containing a small amount of hydrogen fluoride with caesium iodide, argon fluorohydride (HArF) was formed. It is stable up to 40 kelvin (−233 °C). The metastable ArCF2+ 2 dication, which is valence isoelectronic with carbonyl fluoride, was observed in 2010.




Argon is produced industrially by the fractional distillation of liquid air in a cryogenic air separation unit; a process that separates liquid nitrogen, which boils at 77.3 K, from argon, which boils at 87.3 K, and liquid oxygen, which boils at 90.2 K. About 700,000 tonnes of argon are produced worldwide every year.


In radioactive decays

40Ar, the most abundant isotope of argon, is produced by the decay of 40K with a half-life of 1.25×109 years by electron capture or positron emission. Because of this, it is used in potassium-argon dating to determine the age of rocks.


Synopsis from:


Posted 2018/02/22 by Stelios in Education

Tagged with ,

ARGON 2 of 2   Leave a comment


There are several different reasons argon is used in particular applications:

An inert gas is needed. In particular, argon is the cheapest alternative when nitrogen is not sufficiently inert.

Low thermal conductivity is required.

The electronic properties (ionization and/or the emission spectrum) are necessary.

Other noble gases would probably work as well in most of these applications, but argon is by far the cheapest. Argon is inexpensive since it is a by product of the production of liquid oxygen and liquid nitrogen from a cryogenic air separation unit, both of which are used on a large industrial scale. The other noble gases (except helium) are produced this way as well, but argon is the most plentiful by far, since it has a much higher concentration in the atmosphere. The bulk of argon applications arise simply because it is inert and relatively cheap.

Industrial processes

Argon is used in some high-temperature industrial processes, where ordinarily non-reactive substances become reactive. For example, an argon atmosphere is used in graphite electric furnaces to prevent the graphite from burning.

For some of these processes, the presence of nitrogen or oxygen gases might cause defects within the material. Argon is used in various types of arc welding such as gas metal arc welding and gas tungsten arc welding, as well as in the processing of titanium and other reactive elements. An argon atmosphere is also used for growing crystals of silicon and germanium.

Argon is an asphyxiant in the poultry industry, either for mass culling following disease outbreaks, or as a means of slaughter more humane than the electric bath. Argon’s relatively high density causes it to remain close to the ground during gassing. Its non-reactive nature makes it suitable in a food product, and since it replaces oxygen within the dead bird, argon also enhances shelf life.

Argon is sometimes used for extinguishing fires where damage to equipment is to be avoided.

Scientific research

Argon is used, primarily in liquid form, as the target for direct dark matter searches. The interaction of a hypothetical WIMP particle with the argon nucleus produces scintillation light that is then detected by photomultiplier tubes. Two-phase detectors also use argon gas to detect the ionized electrons produced during the WIMP-nucleus scattering. As with most other liquefied noble gases, argon has a high scintillation light yield (~ 51 photons / keV), is transparent to its own scintillation light, and is relatively easy to purify.

Compared to xenon, argon is cheaper and has a distinct scintillation time profile which allows the separation of electronic recoils from nuclear recoils. On the other hand, its intrinsic gamma-ray background is larger due to 39Ar contamination, unless one uses underground argon sources with a low level of radioactivity. Dark matter detectors currently operating with liquid argon include WArP, ArDM, micro Clean and DEAP-I.


Argon is used to displace oxygen- and moisture-containing air in packaging material to extend the shelf-lives of the contents (argon has the European food additive code of E938). Aerial oxidation, hydrolysis, and other chemical reactions which degrade the products are retarded or prevented entirely.

Bottles of high-purity chemicals and certain pharmaceutical products are available in sealed bottles or ampoules packed in argon. In wine making, argon is used to top-off barrels to avoid the aerial oxidation of ethanol to acetic acid during the ageing process.

Argon is also available in aerosol-type cans, which may be used to preserve compounds such as varnish, polyurethane, paint, etc. for storage after opening.

Since 2002, the American National Archives stores important national documents such as the Declaration of Independence and the Constitution within argon-filled cases to retard their degradation. Using argon reduces gas leakage, compared with the helium used in the preceding five decades.

Laboratory equipment

Argon may be used as the inert gas within Schlenk lines and glove boxes The use of argon over comparatively less expensive nitrogen is preferred where nitrogen may react with the experimental reagents or apparatus.

Argon may be used as the carrier gas in gas chromatography and in electro spray ionization mass spectrometry; it is the gas of choice for the plasma used in ICP spectroscopy. Argon is preferred for the sputter coating of specimens for scanning electron microscopy. Argon gas is also commonly used for sputter deposition of thin films as in microelectronics and for wafer cleaning in micro fabrication

Medical use

Cryosurgery procedures such as cryoablation use liquefied argon to destroy cancer cells. In surgery it is used in a procedure called “argon enhanced coagulation” which is a form of argon plasma beam electro surgery The procedure carries a risk of producing gas embolism in the patient and has resulted in the death of one person via this type of accident. Blue argon lasers are used in surgery to weld arteries, destroy tumours, and to correct eye defects. It has also been used experimentally to replace nitrogen in the breathing or decompression mix, to speed the elimination of dissolved nitrogen from the blood.


Incandescent lights are filled with argon, to preserve the filaments at high temperature from oxidation. It is used for the specific way it ionizes and emits light, such as in plasma globes and calorimetry in experimental particle physics. Gas-discharge lamps filled with argon provide blue light. Argon is also used for the creation of blue and green laser light.


Although argon is non-toxic, it is 38% denser than air and is therefore considered a dangerous asphyxiant in closed areas. It is also difficult to detect because it is colourless, odourless, and tasteless. A 1994 incident in which a man was asphyxiated after entering an argon filled section of oil pipe under construction in Alaska highlights the dangers of argon tank leakage in confined spaces, and emphasizes the need for proper use, storage and handling.

Synopsis from:

Posted 2018/02/22 by Stelios in Education

Tagged with ,

NEON   Leave a comment

Neon is a chemical element with symbol Ne and atomic number 10. It is in group 18 (noble gases) of the periodic table. Neon is a colourless, odourless monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypton and xenon) in 1898 as one of the three residual rare inert elements remaining in dry air, after nitrogen, oxygen, argon and carbon dioxide are removed. Neon was the second of these three rare gases to be discovered, and was immediately recognized as a new element from its bright red emission spectrum. Neon’s name is derived from Greek words meaning “new one.” Neon is chemically inert and forms no uncharged chemical compounds.

During cosmic nucleogenesis of the elements, large amounts of neon are built up from the alpha-capture fusion process in stars. Although neon is a very common element in the universe and solar system (it is fifth in cosmic abundance after hydrogen, helium, oxygen and carbon), it is very rare on Earth. It composes about 18.2 ppm of air by volume (this is about the same as the molecular or mole fraction), and a smaller fraction in the crust. The reason for neon’s relative scarcity on Earth and the inner (terrestrial) planets, is that neon forms no compounds to fix it to solids, and is highly volatile, therefore escaping from the planetesimals under the warmth of the newly-ignited Sun in the early Solar System. Even the atmosphere of Jupiter is somewhat depleted of neon, presumably for this reason.

Neon gives a distinct reddish- orange glow when used in either low-voltage neon glow lamps or in high-voltage discharge tubes or neon advertising signs. The red emission line from neon is also responsible for the well known red light of helium-neon lasers. Neon is used in a few plasma tube and refrigerant applications but has few other commercial uses. It is commercially extracted by the fractional distillation of liquid air. It is considerably more expensive than helium, since air is its only source.


Neon (Greek ???? (neon) meaning “new one”) was discovered in 1898 by the British chemists Sir William Ramsay (1852–1916) and Morris W. Travers (1872–1961) in London. Neon was discovered when Ramsay chilled a sample of air until it became a liquid, then warmed the liquid and captured the gases as they boiled off. The gases nitrogen, oxygen, and argon had been identified, but the remaining gasses were isolated in roughly their order of abundance, in a six-week period beginning at the end of May 1898. First to be identified was krypton. The next, after krypton had been removed, was a gas which gave a brilliant red light under spectroscopic discharge. This gas, identified in June, was named neon, the Greek analogue of “novum,” (new), the name Ramsay’s son suggested. The characteristic brilliant red-orange colour that is emitted by gaseous neon when excited electrically was noted immediately; Travers later wrote, “the blaze of crimson light from the tube told its own story and was a sight to dwell upon and never forget.” Finally, the same team discovered xenon by the same process, in July.

Neon’s scarcity precluded its prompt application for lighting along the lines of Moore tubes, which used nitrogen and which were commercialized in the early 1900s. After 1902, Georges Claude’s company, Air Liquide, was producing industrial quantities of neon as a by product of his air liquefaction business. In December 1910 Claude demonstrated modern neon lighting based on a sealed tube of neon. Claude tried briefly to get neon tubes to be used for indoor lighting, due to their intensity, but failed, as home owners rejected neon light sources due to their colour. Finally in 1912, Claude’s associate began selling neon discharge tubes as advertising signs, where they were instantly more successful as eye catchers. They were introduced to the U.S. in 1923, when two large neon signs were bought by a Los Angeles Packard car dealership. The glow and arresting red colour made neon advertising completely different from the competition.

Neon played a role in the basic understanding of the nature of atoms in 1913, when J. J. Thomson, as part of his exploration into the composition of canal rays, channelled streams of neon ions through a magnetic and an electric field and measured their deflection by placing a photographic plate in their path.

Thomson observed two separate patches of light on the photographic plate, which suggested two different parabolas of deflection. Thomson eventually concluded that some of the atoms in the neon gas were of higher mass than the rest. Though not understood at the time by Thomson, this was the first discovery of isotopes of stable atoms. It was made by using a crude version of an instrument we now term as a mass spectrometer.


The first evidence for isotopes of a stable element. In the bottom right corner of J. J. Thomson’s photographic plate are the separate impact marks for the two isotopes neon-20 and neon-22.

Neon is the second lightest inert gas. Neon has three stable isotopes: 20Ne (90.48%), 21Ne (0.27%) and 22Ne (9.25%). 21Ne and 22Ne are partly primordial and partly nucleogenic (i.e., made by nuclear reactions of other nuclides with neutrons or other particles in the environment) and their variations in natural abundance are well understood. In contrast, 20Ne (the chief primordial isotope made in stellar nucleosynthesis) is not known to be nucleogenic or radiogenic (save for cluster decay production, which is thought to produce only a small amount). The causes of the variation of 20Ne in the Earth have thus been hotly debated.

The principal nuclear reactions which generate nucleogenic neon isotopes start from 24Mg and 25Mg, which produce 21Ne and 22Ne, respectively, after neutron capture and immediate emission of an alpha particle. The neutrons that produce the reactions are mostly produced by secondary spallation reactions from alpha particles, in turn derived from uranium-series decay chains. The net result yields a trend towards lower 20Ne/22Ne and higher 21Ne/22Ne ratios observed in uranium-rich rocks such as granites. Neon-21 may also be produced in a nucleogenic reaction, when 20Ne absorbs a neutron from various natural terrestrial neutron sources.

In addition, isotopic analysis of exposed terrestrial rocks has demonstrated the cosmogenic (cosmic ray) production of 21Ne. This isotope is generated by spallation reactions on magnesium, sodium, silicon, and aluminium. By analysing all three isotopes, the cosmogenic component can be resolved from magmatic neon and nucleogenic neon. This suggests that neon will be a useful tool in determining cosmic exposure ages of surface rocks and meteorites.

Similar to xenon, neon content observed in samples of volcanic gases is enriched in 20Ne, as well as nucleogenic 21Ne, relative to 22Ne content. The neon isotopic content of these mantle-derived samples represents a non-atmospheric source of neon. The 20Ne-enriched components are attributed to exotic primordial rare gas components in the Earth, possibly representing solar neon. Elevated 20Ne abundances are found in diamonds, further suggesting a solar neon reservoir in the Earth.


Neon is the second-lightest noble gas, after helium. It glows reddish-orange in a vacuum discharge tube. Also, neon has the narrowest liquid range of any element: from 24.55 K to 27.05 K (-248.45 °C to -245.95 °C, or -415.21 °F to -410.71 °F). It has over 40 times the refrigerating capacity of liquid helium and three times that of liquid hydrogen (on a per unit volume basis). In most applications it is a less expensive refrigerant than helium.

Neon plasma has the most intense light discharge at normal voltages and currents of all the noble gases. The average colour of this light to the human eye is red-orange due to many lines in this range; it also contains a strong green line which is hidden, unless the visual components are dispersed by a spectroscope.

Two quite different kinds of neon lighting are in common use. Neon glow lamps are generally tiny, with most operating at about 100–250 volts. They have been widely used as power-on indicators and in circuit-testing equipment, but light-emitting diodes (LEDs) now dominate in such applications. These simple neon devices were the forerunners of plasma displays and plasma television screens. Neon signs typically operate at much higher voltages (2–15 kilovolts), and the luminous tubes are commonly meters long. The glass tubing is often formed into shapes and letters for signage as well as architectural and artistic applications.


Stable isotopes of neon are produced in stars. 20Ne is created in fusing helium and oxygen in the alpha process, which requires temperatures above 100 mega kelvins and masses greater than 3 solar masses.

Neon is abundant on a universal scale; it is the fifth most abundant chemical element in the universe by mass, after hydrogen, helium, oxygen, and carbon. Its relative rarity on Earth, like that of helium, is due to its relative lightness, high vapour pressure at very low temperatures, and chemical inertness, all properties which tend to keep it from being trapped in the condensing gas and dust clouds which resulted in the formation of smaller and warmer solid planets like Earth.

Neon is monatomic, making it lighter than the molecules of diatomic nitrogen and oxygen which form the bulk of Earth’s atmosphere; a balloon filled with neon will rise in air, albeit more slowly than a helium balloon.

Mass abundance in the universe is about 1 part in 750 and in the Sun and presumably in the proto-solar system nebula, about 1 part in 600. The Galileo spacecraft atmospheric entry probe found that even in the upper atmosphere of Jupiter, the abundance of neon is reduced (depleted) by about a factor of 10, to a level of 1 part in 6,000 by mass. This may indicate that even the ice- planetesimals which brought neon into Jupiter from the outer solar system, formed in a region which was too warm for them to have kept their neon (abundances of heavier inert gases on Jupiter are several times that found in the Sun).

Neon is rare on Earth, found in the Earth’s atmosphere at 1 part in 55,000, or 18.2 ppm by volume (this is about the same as the molecule or mole fraction), or 1 part in 79,000 of air by mass. It comprises a smaller fraction in the crust. It is industrially produced by cryogenic fractional distillation of liquefied air.


Neon is often used in signs and produces an unmistakable bright reddish-orange light. Although still referred to as “neon”, all other colours are generated with the other noble gases or by many colours of fluorescent lighting.

Neon is used in vacuum tubes, high-voltage indicators, lightning arrestors, wave meter tubes, television tubes, and helium-neon lasers. Liquefied neon is commercially used as a cryogenic refrigerant in applications not requiring the lower temperature range attainable with more extreme liquid helium refrigeration.

Both neon gas and liquid neon are relatively expensive – for small quantities, the price of liquid neon can be more than 55 times that of liquid helium. The driver for neon’s expense is the rarity of neon, which unlike helium, can only be obtained from air.

The triple point temperature of neon (24.5561 K) is a defining fixed point in the International Temperature Scale of 1990.


Neon is the first p-block noble gas. Neon is generally considered to be inert. No true neutral compounds of neon are known. However, the ions Ne+, (NeAr)+, (NeH)+, and (HeNe+) have been observed from optical and mass spectrometric studies, and there are some unverified reports of an unstable hydrate.

Synopsis from:



Posted 2018/02/18 by Stelios in Education

Tagged with , , ,

NOBLE GAS   Leave a comment

The noble gases are the elements in group 18 (also sometimes Group 0 IUPAC Style, or Group 8) of the periodic table. The group is also called the helium family or neon family. Chemically, the noble gases are very stable due to having the maximum number of valence electrons their outer shell can hold. Noble gases rarely react with other elements since they are already stable. Under normal conditions, they occur as odourless, colourless, monatomic gases. Each of them has its melting and boiling point close together, so that only a small temperature range exists for each noble gas in which it is a liquid. Noble gases have numerous important applications in lighting, welding and space technology.

The seven noble gases are: helium, neon, argon, krypton, xenon, radon, and ununoctium.


“Noble gas” is the translation of the German Edelgas, which was in use as early as 1898. This refers to the extremely low level of reactivity under normal conditions. The noble gases have also been referred to as inert gases, but these terms are not strictly accurate because several of them do take part in chemical reactions. Another old term is rare gases, although argon forms a fairly considerable part (0.93% by volume, 1.29% by mass) of the Earth’s atmosphere.


The existence of noble gases was not known until after the advent of the periodic table. In the late nineteenth century, Lord Rayleigh discovered that some samples of nitrogen from the air were of a different density than nitrogen resulting from chemical reactions. Along with scientist William Ramsay, Lord Rayleigh theorized that the nitrogen extracted from air was associated with another gas, argon. With this discovery, they realized that a whole class of gases was missing from the periodic table. Eventually, all the known noble gases except for helium were discovered in the air, with argon being much more common than the others, and the table was completed. Helium was detected spectrographically in the Sun in 1868. The isolation of helium on Earth had to wait until 1895. Under standard conditions, the noble gases all occur as monatomic gases.

Chemical make-up

Noble gases have full valence electron shells. Valence electrons are the outermost electrons of an atom and are normally the only electrons which can participate in chemical bonding. According to atomic theory derived from quantum mechanics and experimental trends, atoms with full valence electron shells are extraordinarily stable and therefore do not form chemical bonds.

All of them exhibit an extremely low chemical reactivity and very few noble gas compounds have been prepared. No conventional compounds of helium or neon have yet been prepared, while xenon and krypton are known to show some reactivity in the laboratory. Recently argon compounds have also been successfully characterised. The noble gases’ lack of reactivity can be explained in terms of them having a “complete valence shell”. They have little tendency to gain or lose electrons. The noble gases have high ionization energies and negligible electro negativities The noble gases have very weak inter-atomic forces of attraction, and consequently very low melting points and boiling points. This is why they are all monatomic gases under normal conditions, even those with larger atomic masses than many normally solid elements.


One of the most commonly encountered uses of the noble gases in everyday life is in lighting. Argon is often used as a suitable safe and inert atmosphere for the inside of filament light bulbs, and is also used as an inert atmosphere in the synthesis of air and moisture sensitive compounds (as an alternative for nitrogen). Some of the noble gases glow distinctive colours when used inside lighting tubes ( neon lights). Helium, due to its non reactivity (compared with flammable hydrogen) and lightness, is often used in blimps and balloons. Helium and argon are commonly used to shield a welding arc, and the surrounding base metal from the atmosphere during welding. Krypton is also used in lasers, which are used by doctors for eye surgery. Xenon is used in xenon arc lamps, and it has anaesthetic properties.

Noble gas notation

The noble gases can be used in conjunction with the electron configuration notation to make what is called the Noble Gas Notation. For example: while the electron notation of the element carbon is 1s²2s² 2p², the Noble Gas notation would be [He] 2s²2p².

This notation makes the identification of elements faster, and is shorter and easier than writing out the full notation of orbitals.

Synopsis from:


Posted 2018/02/01 by Stelios in Education

Tagged with , , , , , , , ,

HELIUM 1 of 3   Leave a comment

Helium (He) is a colourless, odourless, tasteless, non-toxic, inert monatomic chemical element that heads the noble gas series in the periodic table and whose atomic number is 2. Its boiling and melting points are the lowest among the elements and it exists only as a gas except in extreme conditions. Extreme conditions are also needed to create the small handful of helium compounds, which are all unstable at standard temperature and pressure. In its most common form, helium-4, it has two neutrons in its nucleus, while a second, rarer, stable isotope called helium-3 contains just one neutron. The behaviour of liquid helium-4’s two fluid phases, helium I and helium II, is important to researchers studying quantum mechanics (in particular the phenomenon of super fluidity) and to those looking at the effects that temperatures near absolute zero have on matter (such as superconductivity).

In 1868 the French astronomer Pierre Janssen first detected helium as an unknown yellow spectral line signature in light from a solar eclipse. Since then large reserves of helium have been found in the natural gas fields of the United States, which is by far the largest supplier of the gas. It is used in cryogenics, in deep-sea breathing systems, to cool superconducting magnets, in helium dating, for inflating balloons, for providing lift in airships and as a protective gas for many industrial uses (such as arc welding and growing silicon wafers). A much less serious use is to temporarily change the timbre and quality of one’s voice by inhaling a small volume of the gas (see precautions section below).

Helium is the second most abundant and second lightest element in the known universe, and is one of the elements believed to have been created in the Big Bang. In the modern universe almost all new helium is created as a result of the nuclear fusion of hydrogen in stars. On Earth helium is rare, and almost all of that which exists was created by the radioactive decay of much heavier elements ( alpha particles are helium nuclei). After its creation, part of it was trapped with natural gas in concentrations up to 7% by volume, from which it is extracted commercially by fractional distillation. Large reserves of helium have been found in the natural gas fields of the United States (the largest supplier) but helium is known in gas reserves of a few other countries.


Notable characteristics


Gas and plasma phases


Helium is the least reactive member of the noble gas elements, and thus also the least reactive of all elements; it is inert and monatomic in virtually all conditions. Due to helium’s relatively low molar (molecular) mass, in the gas phase it has a thermal conductivity, specific heat, and sound conduction velocity that are all greater than any gas, except hydrogen. For similar reasons, and also due to the small size of its molecules, helium’s diffusion rate through solids is three times that of air and around 65% that of hydrogen.


Helium is less water soluble than any other gas known, and helium’s index of refraction is closer to unity than that of any other gas. Helium has a negative Joule-Thomson coefficient at normal ambient temperatures, meaning it heats up when allowed to freely expand. Only below its Joule-Thomson inversion temperature (of about 40 K at 1 atmosphere) does it cool upon free expansion. Once pre cooled below this temperature, helium can be liquefied through expansion cooling.


Throughout the universe, helium is found mostly in a plasma state whose properties are quite different from atomic helium. In a plasma, helium’s electrons and protons are not bound together, resulting in very high electrical conductivity, even when the gas is only partially ionized. The charged particles are highly influenced by magnetic and electric fields. For example, in the solar wind together with ionized hydrogen, they interact with the Earth’s magnetosphere giving rise to Birkeland currents and the aurora.


Solid and liquid phases


Helium solidifies only under great pressure. The resulting colourless, almost invisible solid is highly compressible; applying pressure in a laboratory can decrease its volume by more than 30%. With a bulk modulus on the order of 5×107 Pa it is 50 times more compressible than water. Unlike any other element, helium will fail to solidify and remain a liquid down to absolute zero at normal pressures. This is a direct effect of quantum mechanics: specifically, the zero point energy of the system is too high to allow freezing. Solid helium requires a temperature of 1–1.5 K (about −272 °C or −457 °F) and about 25 bar (2.5 MPa) of pressure. It is often hard to distinguish solid from liquid helium since the refractive index of the two phases are nearly the same. The solid has a sharp melting point and has a crystalline structure.


Solid helium has a density of 0.214 ±0.006 g/ml (1.15 K, 66 atm) with a mean isothermal compressibility of the solid at 1.15 K between the solidus and 66 atm of 0.0031 ±0.0008/atm. Also, no difference in density was noted between 1.8 K and 1.5 K. This data projects that T=0 solid helium under 25 bar of pressure (the minimum required to freeze helium) has a density of 0.187 ±0.009 g/ml.


Helium I state


Below its boiling point of 4.22 kelvin and above the lambda point of 2.1768 kelvin, the isotope helium-4 exists in a normal colourless liquid state, called helium I. Like other cryogenic liquids, helium I boils when it is heated. It also contracts when its temperature is lowered until it reaches the lambda point, when it stops boiling and suddenly expands. The rate of expansion decreases below the lambda point until about 1 K is reached; at which point expansion completely stops and helium I starts to contract again.


Helium I has a gas-like index of refraction of 1.026 which makes its surface so hard to see that floats of Styrofoam are often used to show where the surface is. This colourless liquid has a very low viscosity and a density one-eighth that of water, which is only one-fourth the value expected from classical physics. Quantum mechanics is needed to explain this property and thus both types of liquid helium are called quantum fluids, meaning they display atomic properties on a macroscopic scale. This is probably due to its boiling point being so close to absolute zero, which prevents random molecular motion (heat) from masking the atomic properties.


Helium II state


Liquid helium below its lambda point begins to exhibit very unusual characteristics, in a state called helium II. Boiling of helium II is not possible due to its high thermal conductivity; heat input instead causes evaporation of the liquid directly to gas. The isotope helium-3 also has a super fluid phase, but only at much lower temperatures; as a result, less is known about such properties in the isotope helium-3.


Helium II is a super fluid, a quantum-mechanical state of matter with strange properties. For example, when it flows through even capillaries of 10−7 to 10−8 m width it has no measurable viscosity. However, when measurements were done between two moving discs, a viscosity comparable to that of gaseous helium was observed. Current theory explains this using the two-fluid model for helium II. In this model, liquid helium below the lambda point is viewed as containing a proportion of helium atoms in a ground state, which are super fluid and flow with exactly zero viscosity, and a proportion of helium atoms in an excited state, which behave more like an ordinary fluid.


Helium II also exhibits a creeping effect. When a surface extends past the level of helium II, the helium II moves along the surface, seemingly against the force of gravity. Helium II will escape from a vessel that is not sealed by creeping along the sides until it reaches a warmer region where it evaporates. It moves in a 30 nm-thick film regardless of surface material. This film is called a Rollin film and is named after the man who first characterized this trait, Bernard V. Rollin. As a result of this creeping behaviour and helium II’s ability to leak rapidly through tiny openings, it is very difficult to confine liquid helium. Unless the container is carefully constructed, the helium II will creep along the surfaces and through valves until it reaches somewhere warmer, where it will evaporate. Waves propagating across a Rollin film are governed by the same equation as gravity waves in shallow water, but rather than gravity, the restoring force is the Van der Waals force. These waves are known as third sound.


In the fountain effect, a chamber is constructed which is connected to a reservoir of helium II by a sintered disc through which super fluid helium leaks easily but through which non superfluid helium cannot pass. If the interior of the container is heated, the super fluid helium changes to non superfluid helium. In order to maintain the equilibrium fraction of super fluid helium, super fluid helium leaks through and increases the pressure, causing liquid to fountain out of the container.


The thermal conductivity of helium II is greater than that of any other known substance, a million times that of helium I and several hundred times that of copper. This is because heat conduction occurs by an exceptional quantum-mechanical mechanism. Most materials that conduct heat well have a valence band of free electrons which serve to transfer the heat. Helium II has no such valence band but nevertheless conducts heat well. The flow of heat is governed by equations that are similar to the wave equation used to characterize sound propagation in air. So when heat is introduced, it will move at 20 meters per second at 1.8 K through helium II as waves in a phenomenon called second sound.


Synopsis of:



Posted 2018/01/25 by Stelios in Education

Tagged with

HELIUM 2 of 3   Leave a comment


Helium is used for many purposes that require some of its unique properties, such as its low boiling point, low density, low solubility, high thermal conductivity, or inertness. Helium is commercially available in either liquid or gaseous form. As a liquid, it can be supplied in small containers called dewars which hold up to 1,000 litres of helium, or in large ISO containers which have nominal capacities as large as 11,000 gallons (41,637 litres). In gaseous form, small quantities of helium are supplied in high pressure cylinders holding up to 300 standard cubic feet, while large quantities of high pressure gas are supplied in tube trailers which have capacities of up to 180,000 standard cubic feet.


Because it is lighter than air, airships and balloons are inflated with helium for lift. In airships, helium is preferred over hydrogen because it is not flammable and has 92.64% of the buoyancy (or lifting power) of the alternative hydrogen.

For its low solubility in water, the major part of human blood, mixtures of helium with oxygen and nitrogen ( trimix), with oxygen only ( heliox), with common air ( heliair), and with hydrogen and oxygen ( hydreliox), are used in deep-sea breathing systems to reduce the high-pressure risk of nitrogen narcosis.


At extremely low temperatures, liquid helium is used to cool certain metals to produce superconductivity, such as in superconducting magnets used in magnetic resonance imaging. Helium at low temperatures is also used in cryogenics.

For its inertness and high thermal conductivity, neutron transparency, and because it does not form radioactive isotopes under reactor conditions, helium is used as a coolant in some nuclear reactors, such as pebble-bed reactors.

Helium is used as a shielding gas in arc welding processes on materials that are contaminated easily by air. It is especially useful in overhead welding, because it is lighter than air and thus floats, whereas other shielding gases sink.

Because it is inert, helium is used as a protective gas in growing silicon and germanium crystals, in titanium and zirconium production, in gas chromatography, and as an atmosphere for protecting historical documents. This property also makes it useful in supersonic wind tunnels.


In rocketry, helium is used as an ullage medium to displace fuel and oxidisers in storage tanks and to condense hydrogen and oxygen to make rocket fuel. It is also used to purge fuel and oxidizer from ground support equipment prior to launch and to pre-cool liquid hydrogen in space vehicles. For example, the Saturn V booster used in the Apollo program needed about 13 million cubic feet (370,000 m³) of helium to launch.


The gain medium of the helium-neon laser is a mixture of helium and neon.

Because it diffuses through solids at a rate three times that of air, helium is used as a tracer gas to detect leaks in high-vacuum equipment and high-pressure containers, as well as in other applications with less stringent requirements such as heat exchangers, valves, gas panels, etc.


Because of its extremely low index of refraction, the use of helium reduces the distorting effects of temperature variations in the space between lenses in some telescopes.


The age of rocks and minerals that contain uranium and thorium, radioactive elements that emit helium nuclei called alpha particles, can be discovered by measuring the level of helium with a process known as helium dating.


The high thermal conductivity and sound velocity of helium is also desirable in thermo acoustic refrigeration. The inertness of helium adds to the environmental advantage of this technology over conventional refrigeration systems which may contribute to ozone depleting and global warming effects.

Because helium alone is less dense than atmospheric air, it will change the timbre (not pitch) of a person’s voice when inhaled. However, inhaling it from a typical commercial source, such as that used to fill balloons, can be dangerous due to the risk of asphyxiation from lack of oxygen, and the number of contaminants that may be present. These could include trace amounts of other gases, in addition to aerosolized lubricating oil.




Scientific discoveries

Evidence of helium was first detected on August 18, 1868 as a bright yellow line with a wavelength of 587.49 nanometres in the spectrum of the chromosphere of the Sun, by French astronomer Pierre Janssen during a total solar eclipse in Guntur, India. This line was initially assumed to be sodium. On October 20 of the same year, English astronomer Norman Lockyer observed a yellow line in the solar spectrum, which he named the D3 line, for it was near the known D1 and D2 lines of sodium, and concluded that it was caused by an element in the Sun unknown on Earth. He and English chemist Edward Frankland named the element with the Greek word for the Sun, ????? (helios).


On 26 March 1895 British chemist William Ramsay isolated helium on Earth by treating the mineral cleveite with mineral acids. Ramsay was looking for argon but, after separating nitrogen and oxygen from the gas liberated by sulphuric acid, noticed a bright-yellow line that matched the D3 line observed in the spectrum of the Sun. These samples were identified as helium by Lockyer and British physicist William Crookes. It was independently isolated from cleveite the same year by chemists Per Teodor Cleve and Abraham Langlet in Uppsala, Sweden, who collected enough of the gas to accurately determine its atomic weight. Helium was also isolated by the American geochemist William Francis Hillebrand prior to Ramsay’s discovery when he noticed unusual spectral lines while testing a sample of the mineral uraninite. Hillebrand, however, attributed the lines to nitrogen. His letter of congratulations to Ramsay offers an interesting case of discovery and near-discovery in science.


In 1907, Ernest Rutherford and Thomas Royds demonstrated that alpha particles are helium nuclei, by allowing them to penetrate the thin glass wall of a evacuated tube, then creating a discharge in the tube to study the spectra of the new gas inside. In 1908, helium was first liquefied by Dutch physicist Heike Kamerlingh Onnes by cooling the gas to less than one kelvin. He tried to solidify it by further reducing the temperature but failed, because helium does not have a triple point temperature where the solid, liquid, and gas phases are at equilibrium. It was first solidified in 1926 by his student Willem Hendrik Keesom by subjecting helium to 25 atmospheres of pressure.


In 1938, Russian physicist Pyotr Leonidovich Kapitsa discovered that helium-4 (a boson) has almost no viscosity at temperatures near absolute zero, a phenomenon now called super fluidity This phenomenon is related to Bose-Einstein condensation. In 1972, the same phenomenon was observed in helium-3, but at temperatures much closer to absolute zero, by American physicists Douglas D. Osheroff, David M. Lee, and Robert C. Richardson. The phenomenon in helium-3 is thought to be related to pairing of helium-3 fermions to make bosons, in analogy to Cooper pairs of electrons producing superconductivity.


Extraction and uses

After an oil drilling operation in 1903 in Dexter, Kansas, U.S. produced a gas geyser that would not burn, Kansas state geologist Erasmus Haworth collected samples of the escaping gas and took them back to the University of Kansas at Lawrence where, with the help of chemists Hamilton Cady and David McFarland, he discovered that the gas contained, by volume, 72% nitrogen, 15% methane—insufficient to make the gas combustible, 1% hydrogen, and 12% of an unidentifiable gas. With further analysis, Cady and McFarland discovered that 1.84% of the gas sample was helium. Far from being a rare element, helium was present in vast quantities under the American Great Plains, available for extraction from natural gas.


This put the United States in an excellent position to become the world’s leading supplier of helium. Following a suggestion by Sir Richard Threlfall, the United States Navy sponsored three small experimental helium production plants during World War I. The goal was to supply barrage balloons with the non-flammable lifting gas. A total of 200,000 cubic feet (5700 m³) of 92% helium was produced in the program even though only a few cubic feet (less than 100 litres) of the gas had previously been obtained. Some of this gas was used in the world’s first helium-filled airship, the U.S. Navy’s C-7, which flew its maiden voyage from Hampton Roads, Virginia to Bolling Field in Washington, D.C. on 1 December 1921.


Although the extraction process, using low-temperature gas liquefaction, was not developed in time to be significant during World War I, production continued. Helium was primarily used as a lifting gas in lighter-than-air craft. This use increased demand during World War II, as well as demands for shielded arc welding. Helium was also vital in the atomic bomb Manhattan Project.


The government of the United States set up the National Helium Reserve in 1925 at Amarillo, Texas with the goal of supplying military airships in time of war and commercial airships in peacetime. Due to a US military embargo against Germany that restricted helium supplies, the Hindenburg was forced to use hydrogen as the lift gas. Helium use following World War II was depressed but the reserve was expanded in the 1950s to ensure a supply of liquid helium as a coolant to create oxygen/hydrogen rocket fuel (among other uses) during the Space Race and Cold War. Helium use in the United States in 1965 was more than eight times the peak wartime consumption.


After the “Helium Acts Amendments of 1960” (Public Law 86–777), the U.S. Bureau of Mines arranged for five private plants to recover helium from natural gas. For this helium conservation program, the Bureau built a 425-mile (684 km) pipeline from Bushton, Kansas to connect those plants with the government’s partially depleted Cliffside gas field, near Amarillo, Texas. This helium-nitrogen mixture was injected and stored in the Cliffside gas field until needed, when it then was further purified.


By 1995, a billion cubic metres of the gas had been collected and the reserve was US$1.4 billion in debt, prompting the Congress of the United States in 1996 to phase out the reserve. The resulting “Helium Privatization Act of 1996” (Public Law 104–273) directed the United States Department of the Interior to start liquidating the reserve by 2005.


Helium produced before 1945 was about 98% pure (2% nitrogen), which was adequate for airships. In 1945 a small amount of 99.9% helium was produced for welding use. By 1949 commercial quantities of Grade A 99.995% helium were available.


For many years the United States produced over 90% of commercially usable helium in the world. Extraction plants created in Canada, Poland, Russia, and other nations produced the remaining helium. In the mid 1990s, A new plant in Arzew, Algeria producing 600mmcf came on stream, with enough production to cover all of Europe’s demand. Subsequently, in 2004–2006 two additional plants, one in Ras Laffen, Qatar and the other in Skikda, Algeria were built, but as of early 2007, Ras Laffen is functioning at 50%, and Skikda has yet to start up.


Algeria quickly became the second leading producer of helium. Through this time, both helium consumption and the costs of producing helium increased and during 2007 the major suppliers, Air Liquide, Airgas and Praxair all raised prices from 10 to 30%.


Synopsis of:



Posted 2018/01/25 by Stelios in Education

Tagged with

HELIUM 3 of 3   Leave a comment

Occurrence and production

Natural abundance

Helium is the second most abundant element in the known Universe after hydrogen and constitutes 23% of the elemental mass of the universe. It is concentrated in stars, where it is formed from hydrogen by the nuclear fusion of the proton-proton chain reaction and CNO cycle. According to the Big Bang model of the early development of the universe, the vast majority of helium was formed during Big Bang nucleo-synthesis, from one to three minutes after the Big Bang. As such, measurements of its abundance contribute to cosmological models.

In the Earth’s atmosphere, the concentration of helium by volume is only 5.2 parts per million. The concentration is low and fairly constant despite the continuous production of new helium because most helium in the Earth’s atmosphere escapes into space by several processes. In the Earth’s heterosphere, a part of the upper atmosphere, helium and other lighter gases are the most abundant elements.

Nearly all helium on Earth is a result of radioactive decay. The decay product is primarily found in minerals of uranium and thorium, including cleveites, pitchblende, carnotite and monazite, because they emit alpha particles, which consist of helium nuclei (He2+) to which electrons readily combine. In this way an estimated 3.4 litres of helium per year are generated per cubic kilometre of the Earth’s crust. In the Earth’s crust, the concentration of helium is 8 parts per billion. In seawater, the concentration is only 4 parts per trillion. There are also small amounts in mineral springs, volcanic gas, and meteoric iron. The greatest concentrations on the planet are in natural gas, from which most commercial helium is derived.

The world’s helium supply may be in danger, according to Washington University in St. Louis chemist Lee Sobotka. The largest reserve is in Texas and would run out in eight years if consumed at the current pace. Helium is non-renewable and irreplaceable by conventional methods.

Modern extraction

For large-scale use, helium is extracted by fractional distillation from natural gas, which contains up to 7% helium. Since helium has a lower boiling point than any other element, low temperature and high pressure are used to liquefy nearly all the other gases (mostly nitrogen and methane). The resulting crude helium gas is purified by successive exposures to lowering temperatures, in which almost all of the remaining nitrogen and other gases are precipitated out of the gaseous mixture. Activated charcoal is used as a final purification step, usually resulting in 99.995% pure, Grade-A, helium. The principal impurity in Grade-A helium is neon. In a final production step, most of the helium that is produced is liquefied via a cryogenic process. This is necessary for applications requiring liquid helium and also allows helium suppliers to reduce the cost of long distance transportation, as the largest liquid helium containers have more than five times the capacity of the largest gaseous helium tube trailers.

In 2005, approximately one hundred and sixty million cubic meters of helium were extracted from natural gas or withdrawn from helium reserves, with approximately 83% from the United States, 11% from Algeria, and most of the remainder from Russia and Poland. In the United States, most helium is extracted from natural gas in Kansas and Texas.

Diffusion of crude natural gas through special semi permeable membranes and other barriers is another method to recover and purify helium. Helium can be synthesized by bombardment of lithium or boron with high-velocity protons, but this is not an economically viable method of production.


Although there are eight known isotopes of helium, only helium-3 and helium-4 are stable. In the Earth’s atmosphere, there is one He-3 atom for every million He-4 atoms. However, helium is unusual in that its isotopic abundance varies greatly depending on its origin. In the interstellar medium, the proportion of He-3 is around a hundred times higher. Rocks from the Earth’s crust have isotope ratios varying by as much as a factor of ten; this is used in geology to study the origin of such rocks.

The most common isotope, helium-4, is produced on Earth by alpha decay of heavier radioactive elements; the alpha particles that emerge are fully ionized helium-4 nuclei. Helium-4 is an unusually stable nucleus because its nucleons are arranged into complete shells. It was also formed in enormous quantities during Big Bang nucleosynthesis.

Evaporative cooling of liquid helium-4, in a so-called 1-K pot, cools the liquid to about 1 kelvin. In a helium-3 refrigerator, similar cooling of helium-3, which has a lower boiling point, reaches a temperature of about 0.2 kelvin. Equal mixtures of liquid helium-3 and helium-4 below 0.8 K will separate into two immiscible phases due to their dissimilarity (they follow different quantum statistics: helium-4 atoms are bosons while helium-3 atoms are fermions). Dilution refrigerators take advantage of the immiscibility of these two isotopes to achieve temperatures of a few millikelvins.

There is only a trace amount of helium-3 on Earth, primarily present since the formation of the Earth, although some falls to Earth trapped in cosmic dust. Trace amounts are also produced by the beta decay of tritium. In stars, however, helium-3 is more abundant, a product of nuclear fusion. Extra-planetary material, such as lunar and asteroid regolith, have trace amounts of helium-3 from being bombarded by solar winds. The Moon’s surface contains helium-3 at concentrations on the order of 0.01 ppm. A number of people, starting with Gerald Kulcinski in 1986, have proposed to explore the moon, mine lunar regolith and use the helium-3 for fusion.

The different formation processes of the two stable isotopes of helium produce the differing isotope abundances. These differing isotope abundances can be used to investigate the origin of rocks and the composition of the Earth’s mantle.

It is possible to produce exotic helium isotopes, which rapidly decay into other substances. The shortest-lived heavy helium isotope is helium-5 with a half-life of 7.6×10−22 second. Helium-6 decays by emitting a beta particle and has a half life of 0.8 second. Helium-7 also emits a beta particle as well as a gamma ray. Helium-7 and helium-8 are hyper-fragments that are created in certain nuclear reactions.

The exotics helium-6 and helium-8 are known to exhibit a nuclear halo.

Helium-2 (two protons, no neutrons) is a radioisotope of helium that decays by proton emission into protium (hydrogen) with a half-life of 3×10−27 second.

Biological effects

The voice of a person who has inhaled helium temporarily sounds high-pitched. This is because the speed of sound in helium is nearly three times the speed of sound in air. Because the fundamental frequency of a gas-filled cavity is proportional to the speed of sound in the gas, when helium is inhaled there is a corresponding increase in the resonant frequencies of the vocal tract. (The opposite effect, lowering frequencies, can be obtained by inhaling sulphur hexafluoride).

Inhaling helium, e.g. to produce the vocal effect, can be dangerous if done to excess since helium is a simple asphyxiant, thus it displaces oxygen needed for normal respiration. Death by asphyxiation will result within minutes if pure helium is breathed continuously. In mammals (with the notable exceptions of seals and many burrowing animals) the breathing reflex is triggered by excess of carbon dioxide rather than lack of oxygen, so asphyxiation by helium progresses without the victim experiencing air hunger. Inhaling helium directly from pressurized cylinders is extremely dangerous as the high flow rate can result in barotrauma, fatally rupturing lung tissue.

Neutral helium at standard conditions is non-toxic, plays no biological role and is found in trace amounts in human blood. At high pressures (more than about 20 atm or two MPa), a mixture of helium and oxygen ( heliox) can lead to high pressure nervous syndrome, a sort of reverse anesthetic effect; adding a small amount of nitrogen to the mixture can alleviate the problem.

Containers of helium gas at 5 to 10 K should be handled as if they contain liquid helium due to the rapid and significant thermal expansion that occurs when helium gas at less than 10 K is warmed to room temperature.


Helium is chemically un-reactive under all normal conditions due to its valence of zero. It is an electrical insulator unless ionized. As with the other noble gases, helium has metastable energy levels that allow it to remain ionized in an electrical discharge with a voltage below its ionization potential. Helium can form unstable compounds with tungsten, iodine, fluorine, sulphur and phosphorus when it is subjected to an electric glow discharge, through electron bombardment or is otherwise a plasma. HeNe, HgHe10, WHe2 and the molecular ions He2+, He22+, HeH+, and HeD+ have been created this way. This technique has also allowed the production of the neutral molecule He2, which has a large number of band systems, and HgHe, which is apparently only held together by polarization forces. Theoretically, other compounds may also be possible, such as helium fluorohydride (HHeF) which would be analogous to HArF, discovered in 2000.

Helium has been put inside the hollow carbon cage molecules (the fullerenes) by heating under high pressure of the gas. The neutral molecules formed are stable up to high temperatures. When chemical derivatives of these fullerenes are formed, the helium stays inside. If helium-3 is used, it can be readily observed by helium NMR spectroscopy. Many fullerenes containing helium-3 have been reported. Although the helium atoms are not attached by covalent or ionic bonds, these substances fit the definition of compounds in the Handbook of Chemistry and Physics. They are the first stable neutral helium compounds to be formed.

Synopsis of:


Posted 2018/01/25 by Stelios in Education

Tagged with